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S U M M A R Y
Green’s functions provide an efficient way to model surface-wave propagation and estimate
physical quantities for near-surface processes. Several surface-wave Green’s function ap-
proximations (far-field, no mode conversions and no higher mode surface waves) have been
employed for numerous applications such as estimating sediment flux in rivers, determining
the properties of landslides, identifying the seismic signature of debris flows or to study seismic
noise through cross-correlations. Based on those approximations, simple empirical scalings
exist to derive phase velocities and amplitudes for pure power-law velocity structures provid-
ing an exact relationship between the velocity model and the Green’s functions. However, no
quantitative estimates of the accuracy of these simple scalings have been reported for impul-
sive sources in complex velocity structures. In this paper, we address this gap by comparing
the theoretical predictions to high-order numerical solutions for the vertical component of the
wavefield. The Green’s functions computation shows that attenuation-induced dispersion of
phase and group velocity plays an important role and should be carefully taken into account
to correctly describe how surface-wave amplitudes decay with distance. The comparisons
confirm the general reliability of the semi-analytic model for power-law and realistic shear
velocity structures to describe fundamental-mode Rayleigh waves in terms of characteris-
tic frequencies, amplitudes and envelopes. At short distances from the source, and for large
near-surface velocity gradients or high Q values, the low-frequency energy can be dominated
by higher mode surface waves that can be captured by introducing additional higher mode
Rayleigh-wave power-law scalings. We also find that the energy spectral density for realistic
shear-velocity models close to piecewise power-law models can be accurately modelled using
the same non-dimensional scalings. The frequency range of validity of each power-law scaling
can be derived from the corresponding phase velocities. Finally, highly discontinuous near-
surface velocity profiles can also be approximated by a combination of power-law scalings.
Analytical Green’s functions derived from the non-dimensionalization provide a good estimate
of the amplitude and variations of the energy distribution, although the predictions are quite
poor around the frequency bounds of each power-law scaling.

Key words: Numerical approximations and analysis; Seismic noise; Surface waves and free
oscillations; Wave propagation.

1 I N T RO D U C T I O N

The modelling of seismic surface waves is a critical step in many
near-surface process studies that are based on ground motion ob-
servations (debris flows, landslides, glaciers, rivers and volcanic
tremor; Bard et al. 1999; Tsai & Ekström 2007; Burtin et al. 2008;
McNutt & Nishimura 2008; Tsai et al. 2012; Lai et al. 2018), am-
bient noise cross-correlation applications (Knopoff 1937; Xia et al.

1999; Rivet et al. 2015; Tomar et al. 2018) and seismic hazard as-
sessment applications (Bonnefoy-Claudet et al. 2006; Perron et al.
2018). The seismic analysis of surface processes and the interpre-
tation of seismic field observations rely on our ability to accurately
model surface-wave propagation in heterogeneous media (Larose
et al. 2015). Surface-wave propagation is frequently computed us-
ing various Green’s functions approximations (Aki & Richards
1980) as they offer a concise and computationally inexpensive
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representation of the wavefield (Tsai & Atiganyanun 2014) com-
pared to more sophisticated full-wave numerical methods (e.g. finite
differences or finite elements).

The analytic relationship between a velocity model and the
Rayleigh-wave energy spectrum provided by Green’s functions can
prove to be useful to derive simple physics-based wave-propagation
models (Tsai et al. 2012; Gimbert et al. 2014; Lai et al. 2018)
and to perform the associated inversion. However, their computa-
tion traditionally relies on a numerical integration of the differential
motion–stress equations (Aki & Richards 1980, ch. 7.2.1) imple-
mented in various publicly available software (Herrmann 2013;
Haney & Tsai 2017). In Tsai & Atiganyanun (2014), the authors
showed that the non-dimensionalization of the Rayleigh-wave gov-
erning equations for pure 1-D power-law structures results in an ex-
act expression that links the shear-velocity power-law parameters to
the Green’s function amplitude and the associated phase and group
velocities. Even though the near-surface geological structure is ex-
tremely complex, piecewise power-law velocity models can provide
a good approximation at low frequencies (Boore & Joyner 1997),
the structure at high frequencies being poorly constrained. For more
complex velocity structures, which can be approximated by piece-
wise power laws, the frequency transition between each power-law
scaling tends to occur when phase velocities cross. It seems, there-
fore, possible to represent the Rayleigh-wave energy spectrum us-
ing the non-dimensional approach even in highly heterogeneous
media.

Any Green’s functions description relies on various assumptions
about wave propagation: a point source approximation, receivers
located in the far-field and no lateral discontinuities. While, lat-
eral discontinuities and the associated seismic-wave diffraction and
conversions (Yanovskaya et al. 2012) can generally be neglected at
short distances from the source or for large wavelengths, the interac-
tion between surface and body waves and the propagation of higher
mode surface waves can have a strong impact on the wavefield in
discontinuous media but are generally ignored (Bonnefoy-Claudet
et al. 2006). Finally, the non-dimensional scalings described above
are only valid for pure power laws, while more realistic velocity
structures will introduce more complexity, so one can question the
range of validity of the approximations in discontinuous media for
surface-wave propagation, a question that, to the best of our knowl-
edge, has not been answered in the past.

Herein, we aim to provide some quantitative estimates of the accu-
racy of semi-analytic Green’s functions computed through the non-
dimensionalization introduced in Tsai & Atiganyanun (2014) for
complex 1-D media and give a better understanding of the method’s
limitation. In heterogeneous media and for arbitrary sources, the sur-
face wavefield can be composed of both Love and Rayleigh waves.
In order to avoid accounting for both contributions and running ex-
pensive full 3-D simulations, we only consider vertical forces in this
paper, that is, we focus on Rayleigh waves. Although for arbitrary
sources Love waves can dominate the horizontal energy distribution
(Bonnefoy-Claudet et al. 2006), Rayleigh-wave dispersion curves
are widely used for near-surface characterization (e.g. Tomar et al.
2018) or to study specific underlying processes that cause seismic
noise due to vertical-component ground motions generally being
more reliable (e.g. Gimbert et al. 2014). Since limited field obser-
vations exist for which the seismic structure is well constrained, we
assess the reliability of semi-analytic Green’s functions by compar-
ison with high-order numerical solutions that accurately represent
wave propagation in complex realistic media. We first summarize
the main analytic results that we aim to assess as well as the nu-
merical method to generate reference solutions. Then, we compare

results for a range of seismic media with increasing structural com-
plexity to study the impact of attenuation and shear-velocity depth
gradients on wave propagation for idealized sedimentary basin seis-
mic models. Finally, we consider a realistic piecewise power-law
model and 1-D profiles extracted from the SCEC Community Veloc-
ity Model (CVM-S4.26, Lee et al. 2014) to investigate the influence
of strong shear-velocity discontinuities on the energy distribution
and assess the accuracy of the semi-analytic approach.

2 S P E C T R A L E N E RG Y P R E D I C T E D B Y
A NA LY T I C G R E E N ’ S F U N C T I O N S

In this section, we recall the main theoretical results to derive the
vertical energy distribution for linear wave propagation due to an
impulsive source using semi-analytic Green’s functions. From Aki
& Richards (1980; ch. 7), the spectral ground velocity amplitude
|u̇( f, r )| (m s−1 Hz−1) for a given frequency f (Hz) and at a distance
r (m) from the source, can be expressed as

|u̇( f, r )| = 2π f |F( f )G( f, r )|, (1)

where G is the Fourier transform of the displacement Green’s func-
tion and F is the Fourier transform of the source time function.
Throughout this paper, we use a Gaussian source time function
with amplitude 106 m s−2 but this is not important since we only
consider small seismic perturbations (Komatitsch & Vilotte 1998)
that can thus be scaled to fit any source-time function in post-
processing. From Tsai & Atiganyanun (2014), considering the first
N Rayleigh-wave overtones, the Green’s function amplitude |G| can
be expressed in the far-field and for a vertical force as

|G( f, r )| = ∑
i=0,N

N R
i ki

8ρsvc,ivu,i

√
2

πkir
e

−
π f r

vu,i QR , (2)

where the subscript i = 0, N corresponds to the mode number
with 0 being the fundamental mode, NR is the non-dimensional
Rayleigh-wave amplitude such that N R = ρ(0)e2(0)e2(0)

k I R
1

with I R
1 =

1
2

∫ ∞
0 ρ(z)(e1(z)2 + e2(z)2)dz, (e1, e2) the horizontal and vertical

Rayleigh-wave displacement eigenfunctions, ρ(z) (kg m−3) the solid
medium density at depth z, k = 2π f

vc
(1 m−1) the angular wavenum-

ber, vc (m s−1) the Rayleigh-wave phase velocity, vu (m s−1) the
group velocity and QR the dimensionless Rayleigh-wave temporal
quality factor. Attenuation is included in eq. (2) by introducing the
decaying exponential by simplifying Green’s functions using the
asymptotic approximation to the travelling Legendre functions sim-
ilar to eq. (11.23) in ch. 11 of Dahlen & Tromp (1998). Note that in
this paper, we will only consider low-loss media such that QR � 10
(Macdonald 1959), these values being characteristic of most real-
istic soil conditions (Lai & Rix 2002). Finally, since the signal has
finite energy, we can compute its energy spectral density (ESD) Ev

((m s−1 Hz−1)2), which is commonly used to measure the strength
of transient signals, similar to how power spectral density is used
for stationary seismic noise (Bormann 2012, ch. 4):

Ev( f, r ) = |u̇( f, r )|2. (3)

All ESDs are reported in decibels (dB) relative to Ev (i.e. we report
10log10Ev). The energy distribution can provide information about
the underlying physical processes: to estimate grain size of bed load
(Tsai et al. 2012), to determine the properties of landslides (Hibert
et al. 2017), to identify the seismic signature of debris flows (Lai
et al. 2018), to characterize crack formation in granular materials
(Michlmayr et al. 2012) and to study the ambient noise through
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cross-correlation (Zhan & Ni 2010). To build the Green’s functions
from eq. (2), we compute Rayleigh-wave eigenfunctions, phase and
group velocities iteratively over a given frequency range following
the numerical integration described, for example, in Aki & Richards
(1980; ch. 7.2.1). As mentioned in the introduction, this numerical
integration makes the Green’s functions solution not purely analytic
for an arbitrary velocity structure but for simplicity we will refer to
this solution as analytic in the rest of the paper. Alternatively, instead
of performing a numerical integration for each seismic model, it is
also possible to derive approximations for the Rayleigh-wave eigen-
functions and velocities from non-dimensional parameters given for
piecewise power-law models (Tsai & Atiganyanun 2014). These pa-
rameters enable one to only perform the computation of eigenfunc-
tions once (for a reference power-law model and a given Poisson’s
ratio) to compute the Green’s functions and thus help to greatly
reduce the computational time and simplify the comparisons of
energy distribution for various seismic models. Details about the
computation of non-dimensional parameters are described in Ap-
pendix A.

To study the accuracy of the Green’s function approximation, we
will focus on three quantities that give us insight about the subsur-
face velocity and the source mechanism: the main frequency peak
(or characteristic frequency) of the surface-wave energy distribu-
tion, its amplitude and its envelope. The main frequency peak and
ESD amplitude carry information about the source duration and
strength and the ESD envelope is strongly connected to attenuation
through the exponential dependence in eq. (2). In the next sections,
to illustrate the results we will show comparisons between ESDs and
Fourier amplitudes as a function of distance to the source as com-
puted with the analytic Green’s functions and the fully numerical
method deconvolved from the source term.

3 N U M E R I C A L M E T H O D F O R
G E N E R AT I N G R E F E R E N C E S O LU T I O N S

To compute a reference solution and provide meaningful compar-
isons with the theoretical model of Section 2, we compute high-
order numerical solutions. The numerical method employed in this
paper is the axisymmetric version of the seismic wave propagation
package SPECFEM (Komatitsch & Vilotte 1998), which is based
on a weak Galerkin formulation with spectral finite elements and
Gauss–Lobatto–Legendre points. SPECFEM accounts for complex
velocity structures and a constant quality factor over a specified
frequency range. Note that the implementation of a constant qual-
ity factor is not straightforward in time-domain simulations (Blanc
et al. 2016). To model viscoelastic attenuation, SPECFEM relies
on a Zener solid approach based on memory variables with specific
relaxation times (Carcione et al. 1988) that are computed through
nonlinear optimization (Blanc et al. 2016). To obtain constant shear
and compressional quality factors, Qs and Qp, we optimize the re-
laxation times over our frequency range of interest (f = [1, 500] Hz)
and consider five Zener solids.

4 S U R FA C E - WAV E A M P L I T U D E S
W I T H I N VA R I O U S V E L O C I T Y
S T RU C T U R E S

To provide the most general assessment of analytic Green’s func-
tions performance in modelling surface waves, we will focus on
both elastic and viscoelastic media with increasing complexity in

Table 1. Simulation parameters for the simulation of seismic waves in a
homogeneous model. Lx and Lz are the horizontal and vertical domain size,
ρ is the solid density, α is the shear velocity power-law coefficient, Qs and
Qp are the shear and compressional quality factors and f0 is the dominant
frequency.

Lx × Lz (m) ρ (kg m−3) α Qs Qp f0 (Hz)

1500 × 100 1500 0 20 40 25

shear velocity structure. Note that we only consider laterally homo-
geneous media, as lateral heterogeneities introduce other difficulties
(reflections, mode conversions and surface to body-waves conver-
sions) beyond the scope of this paper. Throughout the section, we
use a Poisson’s ratio of ν = 0.25 for which Rayleigh waves are
expected to dominate the vertical component of the energy distri-
bution (Rayleigh waves being responsible for at least 70 per cent
of the vertical motion, Weaver 1985). Moreover, while the semi-
analytic method is valid for any given frequency, we use differ-
ent frequency ranges between the pure power-law and the more
realistic velocity models. This is solely to emphasize on the fre-
quency range where the energy spectrum is impacted by discon-
tinuities and/or strong gradients that vary between each velocity
model.

Finally, in this section, although we show comparisons for a
given seismic model vs, results can be adapted to new models ṽs by
considering scaled velocities such that ṽs(z′) = vs(z) with z

′ = Az.
In this configuration, we obtain a very simple relationship between
phase velocities vc,i ( f ) = ˜vc,i (A f ), where ˜vc,i corresponds to the
new model velocity ṽs. Finally, the updated Green’s function G̃
using ṽs and defined in eq. (2) reads

rcl|G̃( f/A, r )| = 1

A
|G( f, r/A)|. (4)

4.1 Homogeneous viscoelastic model

In the case of homogeneous media, the numerical method and
the approximation eq. (2) should give almost identical solutions
since the surface-wave train will only be composed of the funda-
mental mode and will not be impacted by higher mode surface
waves. The simulation parameters for this model are given in Ta-
ble 1. Note that it is often assumed that QR ≈ Qs, where Qs is the
shear-wave quality factor, which is a valid assumption when con-
sidering spatially homogeneous body-wave quality factors and low
shear to compressional velocity ratios such that vs

vp
≤ 0.55, where

vp and vs are the compressional and shear velocities, respectively.
More generally, for a homogeneous medium and spatially con-
stant quality factors and vs

vp
> 0.55, one has to take into account

the compressional quality factor Qp. For a homogeneous seismic
model and any Poisson’s ratio, the Rayleigh-wave quality factor is
(Macdonald 1959)

1

QR
= (1 − m)

1

Qs
+ m

1

Qp
, (5)

where m is defined by

m = a(2 − b)(1 − b)

a(2 − b)(1 − b) − b(1 − a)(2 − 3b)
, (6)

with a = ( vc
vp

)2 and b = ( vc
vs

)2. Moreover, to correctly model the

energy distribution with Green’s functions, one needs to properly
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account for the impact of attenuation on velocity dispersion, i.e
the frequency dependence of the phase velocity due to visoelastic
processes. Details can be found in Appendix B, where we show the
impact of attenuation-induced velocity dispersion on wave propa-
gation.

In Figs 1(a), (b) and (c), we show the time-series of vertical ve-
locity at various distances from the source r = 642, 832, 895 m and
their corresponding frequency-domain ESDs in Figs 1(d), (e) and
(f). As expected, we observe that the signal is almost entirely com-
posed of fundamental-mode Rayleigh waves whose main frequency
shifts towards lower frequencies as distance increases because of
attenuation.

In this simple case, the analytic and the numerical ESDs are in
reasonable agreement throughout the spectrum, especially around
the main frequency peak. In Fig. 1(g), we note that the analytic
model captures well the amplitude decay with distance, for various
frequencies (f = 45, 50, 55 Hz), owing to both geometrical spreading

as 1√
r

and attenuation as e− π f r
QRvu .

4.2 Power-law structure

The homogeneous case presented in Section 4.1 is only meaningful
for validation purposes because it is not a realistic approximation
for the majority of subsurface seismic models. In this section, we
focus on more complex shear-velocity structures by considering 1-
D power-law profiles, typical of sedimentary basins, and sometimes
assumed when inverting for near-surface shear velocity (Ferrazzini
et al. 1991; Métaxian et al. 1997). In this case, the shear velocity
can be expressed as

rclvs = vs,z0

(
z

z0

)α

, (7)

where z (m) is the depth, α is the power-law exponent and vs,z0

(m s−1) is the velocity at depth z0 (m). To ensure numerical stability,
we have to truncate the shear velocity profile near the surface in order
to always have strictly positive shear velocities. We thus consider
the shear velocity to be constant for depth z < zt, where zt = 0.01 m.
Note that we verified numerically in the Supporting Information
(section 1) that the error corresponding to this truncation depth
zt and resolution is negligible for the frequency range considered.
In this paper, we will consider various values of α, in order to
study the influence of the shear-velocity gradient with depth on
wave propagation. In addition, we set vs,z0 = 2206 m s−1 and z0 =
1000 m for all simulations. The density and velocity profiles are
given in Table 2 and taken from Boore & Joyner (1997) for a typical
sedimentary basin.

4.2.1 Elastic power-law medium

Before introducing viscoelasticity, we study a purely elastic medium
with a power-law shear velocity structure. By ignoring attenuation,
we avoid issues related to physical dispersion presented in the last
section. Also, in the elastic case, the computation of Green’s func-
tions is straightforward and enables us to focus only on the impact
of the power-law profile on the time-series and ESDs.

We run a simulation with the parameters presented in Table 2
labelled as Elastic. Fig. 2 shows the vertical velocity time-series
and corresponding ESDs at three different distances. In the left-
hand panels (a), (b) and (c), we note that the subsurface velocity
variations lead to a more complex waveform with multiple arrivals
and highly dispersive surface waves. In panels (d), (e) and (f), we

observe that the analytic model with the fundamental mode only
captures well the amplitude and shape of the energy distribution.
Nonetheless, we note that higher mode (which propagates at a larger
velocity than the fundamental mode) arrivals introduce oscillations
in the ESD that can be captured by considering the first higher order
mode along with the fundamental mode.

Fig. 2(g) shows comparisons of spectral amplitudes for the the-
oretical model (the dashed lines) and the Fourier transform of the
numerical solutions (the solid lines) against distance from the source
for various frequencies (f = 35, 40, 50 Hz) for which surface waves
are dominant. The amplitudes are well captured by the analytic
Green’s functions with an error of < 5 per cent for all distances. We
also observe that the amplitude decay with distance, as a result of
geometrical attenuation, is accurately reproduced by the theoretical
model that is expected when there is no lateral variation in velocity
structure. The good agreement of amplitude and peak frequency
shows that the fundamental mode provides an accurate description
of wave propagation for low frequencies f < 50 Hz and this ve-
locity profile and that higher mode Rayleigh waves do not play a
significant role in the energy distribution.

4.2.2 Viscoelastic power-law medium

The absence of attenuation in the previous simulation is not a re-
alistic approximation since relaxation processes strongly alter the
shape, amplitude and frequency peak of the energy distribution. To
study the influence of viscoelasticity on surface-wave propagation
in a complex velocity structure, we consider quality factors typical
of unconsolidated sedimentary basins. These Q values combined
with a power-law shear velocity profile are a good approximation
of near-surface seismic structures (Anderson & Hough 1984). For
models with varying body-wave quality factors that vary with depth,
the Rayleigh-wave quality factor is frequency dependent and de-
pends on the shear and compressional velocities (Anderson et al.
1965). Equations are presented in the Supporting Information (sec-
tion 2), along with a figure showing the frequency dependence of
the Rayleigh-wave quality factor for a realistic 1-D velocity pro-
file extracted from the SCEC model. We run a simulation with the
parameters given in Table 2 labelled as ‘Viscoelastic I’.

The comparisons of time-series and ESDs for both the numerical
simulations and the analytic model at various distances from the
source are presented in Fig. 3. The amplitude and the shape of the
ESDs are well captured by the fundamental-mode theoretical model.
Again, by adding in the first higher mode Rayleigh wave one is able
to reproduce the oscillatory behaviour of the ESDs. In Fig. 3(g),
we also compare the vertical velocity response against distance
for various frequencies (f = 10, 15, 20 Hz) for which the surface-
wave energy is still dominant. The velocity amplitude decay with
distance is well captured by the analytic model for low frequencies
with an error < 10 per cent. The introduction of attenuation leads
to a slightly more intricate surface energy distribution than for
an elastic media over the same frequency range. First, the main
ESD frequency peak shifts towards lower frequencies as the surface
waves propagate in this dissipative medium. Second, we observe,
as previously mentioned, that arrivals from the various Rayleigh-
wave modes introduce periodicity in the time-series and, therefore,
additional harmonics in the frequency domain as in the elastic case.
Finally, while most of the ESD consists of the first two modes,
we note that the theoretical model seems not to fully capture the
variations of the ESD for frequencies above a certain threshold f0

that varies with distance (e.g. f > 35 Hz in Fig. 3f). The frequency
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Analytic method for surface-wave propagation 1409

Figure 1. Panels (a), (b) and (c), vertical velocity perturbations against time, for the simulation parameters presented in Table 1, at various distances from the
source, respectively, from top to bottom, r = 263, 326, 453 m. Panels (d), (e) and (f), the corresponding energy spectral density against frequency computed
from the numerical simulation (blue) and the fundamental-mode analytic model (red). Panel (g), vertical velocity against distance of numerical simulations
(the solid lines) and theoretical model (the dashed lines) at frequency f = 45 Hz (blue), f = 50 Hz (red), f = 55 Hz (yellow).

Table 2. Simulation parameters for the simulation of seismic waves in both an elastic (Elastic) and viscoelastic models
(Viscoelastic I and Viscoelastic II) with a shear velocity power-law structure. Lx and Lz are the horizontal and vertical
domain sizes, respectively, ρ is the solid density, α is the shear velocity power-law coefficient, Qs and Qp are the shear
and compressional quality factors, respectively, and f0 is the dominant frequency. The double apostrophe ” means that
the value is unchanged from the previous line.

Lx × Lz (m) ρ (kg m−3) α Qs Qp f0 (Hz)

Elastic 1500 × 600 1500 0.272 9999 9999 25
Viscoelastic I ” ” ” 20 40 ”
Viscoelastic II ” ” 0.1 20 40 ”
Viscoelastic III ” ” 0.45 ” ” ”
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1410 Q. Brissaud and V.C. Tsai

Figure 2. Panels (a), (b) and (c), vertical velocity perturbations against time, for the simulation parameters ‘Elastic’ presented in Table 2, at various distances
from the source, respectively, from top to bottom, r = 263, 326, 453 m. Panels (d), (e) and (f), the corresponding energy spectral density against frequency
computed from the numerical simulation (blue), the fundamental + first-mode analytic model (red) and the fundamental-mode analytic model (dashed blue).
Panel (g), comparisons of the Fourier transforms of the vertical velocity against distance from the simulations (solid) and the theoretical model (dashed) at
various frequency f = 35 Hz (blue), f = 45 Hz (orange) and f = 50 Hz (yellow). Panel (g), comparisons of the Fourier transforms of the vertical velocity against
distance from the simulations (solid) and the theoretical model (dashed) at various frequency f = 35 Hz (blue), f = 45 Hz (orange) and f = 50 Hz (yellow).
Note that results can be scaled for any new shear-velocity model ṽs(Az) = vs(z), where A is a scalar and z is the depth, using eq. (4).

threshold corresponds to the transition where the higher order modes
begin to be significant over the first two modes.

The energy amplitude of the higher order modes is dependent on
the subsurface velocity model, as larger velocity gradients lead to
more trapped energy near the surface. The power α defined in eq. (7)
plays a key role in how much energy is trapped near the surface and,
therefore, also strongly affects the overall energy distribution. With
lower values of α, the shear-wave velocity gradient with depth will
also decrease, and consequently the energy of waves trapped at the
surface will be smaller. With larger values of α, higher mode energy
grows and the energy of the fundamental-mode surface wave will

be less and less dominant. To illustrate this point, we compare the
previous simulation (α = 0.272) with simulations with α = 0.1 and
α = 0.45 together with the parameters from Table 2, respectively,
labelled as ‘Viscoelastic II’ and ‘Viscoelastic III’.

Results are shown in Fig. 4, for α = 0.1 panels (a) and (c) and
for α = 0.45 panels (b) and (d). We observe in panels (a) and (c)
that the ESD is largely dominated by the fundamental mode as
the velocity gradients are small. Conversely, in panels (b) and (d),
we note that due to the large shear-velocity gradient with depth,
the high-frequency part (for f > 15 Hz) of the spectrum is highly
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Analytic method for surface-wave propagation 1411

Figure 3. Panels (a), (b) and (c), vertical velocity perturbations against time, for the simulation parameters ‘Viscoelastic I’ presented in Table 2 at various
distances from the source, respectively, from top to bottom, r = 263, 326, 453 m. Panels (d), (e) and (f), the corresponding energy spectral density against
frequency computed from the numerical simulation (blue), the fundamental + first-mode analytic model (red) and the fundamental-mode analytic model
(dashed blue). Panel (g), Spectral vertical velocity against distance from the source, for the simulation parameters ‘Viscoelastic I’ presented in Table 2, from
numerical simulations (the solid lines) and analytic Green’s functions (the dashed lines) for various frequencies f = 10 Hz (blue), f = 15 Hz (orange) and f =
20 Hz (yellow). Note that results can be scaled for any new shear-velocity model ṽs(Az) = vs(z), where A is a scalar and z is the depth, using eq. (4).
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1412 Q. Brissaud and V.C. Tsai

Figure 4. Panels (a) and (b), vertical velocity perturbations against time, for the simulation parameters ‘Viscoelastic II’ presented in Table 2 (panel a) and
’Viscoelastic III’ presented in Table 2 (panel b) at r = 263 m from the source. Panels (c) and (d), the corresponding energy spectral density against frequency
computed from the numerical simulation (blue), the fundamental + first-mode analytic model (red) and the fundamental-mode analytic model (dashed blue).
Note that results can be scaled for any new shear-velocity model ṽs(Az) = vs(z), where A is a scalar and z is the depth, using eq. (4).

impacted by higher modes. By running frequency-domain simula-
tions using Computer Program in Seismology (Herrmann 2013),
we identify that those higher mode arrivals correspond to modes
larger than the fifth mode. Moreover, at low frequency and for a
large α value the fundamental mode does not fully capture veloc-
ity amplitude and we have to include the first overtone to properly
reproduce the energy distribution. For such large values of α, the
hypothesis that surface-wave energy dominates the spectrum should
be tempered as pointed out from observations by Bonnefoy-Claudet
et al. (2006). In Fig. A2, we plot the Green’s function amplitude
against α and we observe that for α ≈ 0.5, the first higher order and
fundamental-mode Rayleigh wave Green’s functions have compa-
rable amplitudes. Nonetheless, the semi-analytic approach provides
a reasonable ESD estimate using the first fundamental and first
overtone only at low frequencies.

To provide a rough empirical estimate of the frequency threshold
f0, where modes beyond the first two need to be accounted for to
accurately model ESD amplitudes, we ran simulations with the same
Poisson’s ratio and various α < 0.5, values for typical sedimentary
basins (Plumier & Doneux 2003; Chandler et al. 2005, 2006; Huang
et al. 2007; Wang & Wang 2016). We were able to approximate f0

as f0 ≈ 1
2α

f r
0 (QR), where f r

0 (QR) is the quality-factor dependent
surface-wave peak frequency at distance r from the source. For a
given constant quality factor, f r

0 can be derived analytically from
the non-dimensional parameters and is given in eq. (A7). With
increasing α, f0 → 0 and we can expect higher modes to play
a significant role in the low-frequency energy distribution. More
details about this empirical estimate are given in Appendix C.

4.3 Realistic basins

The comparisons described in Section 4 are only based on pure
power-law near-surface velocity structures, while real seismic mod-
els are often more discontinuous. To analyse more realistic velocity
models, we now consider a generic rock site velocity profile from

Boore & Joyner (1997), which is composed of piecewise power-law
scalings as well as discontinuous 1-D models extracted from the
SCEC Community Velocity Model for Southern California model
version 4.26 (CVM-S4.26, Lee et al. 2014).

4.3.1 Piecewise power-law model

Before focusing on viscoelastic structures from the SCEC model,
we extend last section’s study of a simple power-law velocity model
to a piecewise power-law model. In this case, the single power-law
approximation of the ESD is no longer valid but, as suggested in
Tsai & Atiganyanun (2014), the frequency transition between each
power-law scaling tends to occur when phase velocities cross. This
frequency roughly corresponds to the expected depth sensitivity
of Rayleigh waves for a given frequency. To compare the analytic
and the numerical approach, we use the velocity model from Boore
& Joyner (1997) composed of five separate piecewise power-law
scalings as

vs(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

245, z ≤ 1,

2206
(

z
z0

)0.272
, 1 < z ≤ 30

3542
(

z
z0

)0.407
, 30 < z ≤ 190

2505
(

z
z0

)0.199
, 190 < z ≤ 4000

2927
(

z
z0

)0.086
, 4000 < z

. (8)

Shear- and compressional-wave velocities, phase velocities and
quality factors are shown in Fig. 5. We observe in panel (c) that the
transitions between the power-law scalings α = 0.199 and α = 0.272
occur around f ≈ 2. Hz and α = 0.407 and the transition between α

= 0.407 is around f ≈ 6.3 Hz. Together with the velocity model of
eq. (8), we consider a realistic attenuation model of Graves’ (Graves
& Pitarka 2010) presented in Fig. 5(b). We show the waveform and
ESD comparisons in Fig. 6. In panels (a), (b) and (c), we observe
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Figure 5. Panel (a), Shear (blue) and compressional (orange) velocity profile against depth for Boore’s model. Panel (b), corresponding Shear (blue) and
compressional (orange) quality factors against depth for the low-frequency Graves attenuation model. Panel (c), Rayleigh-wave phase velocities against
frequency for the true seismic model ‘True model’ (the dashed red line) and the three piecewise velocity models with α = 0.272 (the thick blue line), α =
0.407 (the blue line) and α = 0.199 (the thin blue line).

Figure 6. Panels (a), (b) and (c), vertical velocity perturbations against time, for the piecewise power-law model from Boore at various distances from the
source, respectively, from top to bottom, r = 10.1, 14.1, 18.1 km. Panels (d), (e) and (f), energy spectral density against frequency for the same simulation
parameters computed from the numerical simulation (blue) the piecewise analytic model (red), the analytic model with the power-law scaling α = 0.199 (dashed
green) and the power-law scaling α = 0.407 (dashed pink).

numerous highly dispersive higher mode Rayleigh waves that trans-
late into a complex energy distribution. In panels (d), (e) and (f), we
note that for f < 2 Hz the numerical ESD is very well captured by
the power-law scaling α = 0.199 and for 5 > f ≥ 2 Hz, the power-
law scaling α = 0.407 provides the best fit. We also observe that
for 5 > f ≥ 2 Hz, higher modes play a more important role than for
f < 2 Hz translating into larger spectrum oscillations that are cap-
tured by the non-dimensional piecewise model. We conclude that
the Rayleigh-wave ESD from the piecewise velocity model defined
in eq. (8) can be very well reproduced by simply considering various

non-dimensional power-law scalings described in Appendix A over
the right frequency ranges.

4.3.2 Los Angeles Basin—highly discontinuous shear-velocity
model

The near-surface velocity model presented in Fig. 5(a) does not
have strong discontinuities. However, in certain basins, the velocity
profile can be more discontinuous because of the presence of other
shallow low-velocity sedimentary layers (Benjumea et al. 2016) or,
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Figure 7. Panel (a), Shear (blue) and compressional (orange) velocity profile against depth (log scale) for the Pasadena area and corresponding velocity
piecewise model from eq. (9) (dashed). Panel (b), fund-mode Rayleigh-wave phase velocities against frequency for the true seismic model ‘True model’ (the
red line) and the three piecewise velocity models with α = 0.31 (the thin blue line), α = 0.66 (the blue line) and α = 0.26 (the thick blue line).

Figure 8. Panels (a), (b) and (c), vertical velocity perturbations against time, for the Los Angeles Basin model, at various distances from the source, respectively,
from top to bottom, r = 18.1, 26, 34 km. Panels (d), (e) and (f), corresponding energy spectral density against frequency for the same simulation parameters
computed from the numerical simulation (the blue line) and the analytic model with the fundamental-mode and first overtone Rayleigh wave (the dashed red
line). In Panel (d), we also show the analytic power-law ESDs against frequency for the various scalings α = 0.315 (the thin red line), α = 0.71 (the red line)
and α = 0.263 (the thick red line). The dashed red vertical lines correspond to the frequency bounds between each power-law scalings.

at larger depths, owing to the rock-sediment boundary. As in the
previous section, the power-law approximation is no longer valid
but one can try to approximate a generic shear-velocity profile as
a combination of piecewise power-law velocity structures. In this
section, we will study the impact of a strong shear-wave velocity
discontinuity on the energy distribution and explore the possibility
of predicting the ESD through piecewise power-law scalings.

To assess the accuracy of Green’s functions for non-power-law
structures, we consider another velocity profile, shown in Fig. 7,
at latitude 34.12 and longitude −118.12, corresponding to the
Pasadena area in Los Angeles county extracted from the SCEC 4.26
model. The Pasadena profile shows a strong discontinuity around
z = 300 m that will impact low-frequency surface-wave eigenfunc-
tions.
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In order to use simple power-law scalings to predict the ESD,
we have to first discretize the velocity model. Most of the velocity
structure can be very well described by several joined power-law
scalings. However, a discontinuity cannot be fully captured by a
power law and needs to be crudely approximated. This velocity
jump can be roughly reproduced by large α and velocity vs,z0 values
in eq. (7), which will lead to a very steep velocity profile with depth.
Therefore, to discretize the velocity profile showed in Fig. 7, we pick
two depths z1 = 190 m and z2 = 600 m and define three piecewise
power-law scalings such that

1700( z
z0

)0.31, z ≤ z1,

3673( z
z0

)0.66, z1 < z ≤ z2,

2240( z
z0

)0.26, z2 < z,
(9)

where we choose the power-law scalings by finding the best shear-
wave velocity fitting of the true velocity model over the various
depth ranges. Along with the shear-velocity model, we have to pro-
vide the compressional velocity model and the density model. To
compute the compressional velocities, we will use a constant Pois-
son’s ratio over each interval defined in eq. (9). As the Poisson’s
ratio varies with depth, we calculate the geometric mean of the Pois-
son’s ratio from the SCEC model over each interval. Similarly, we
compute the density model by taking the geometric mean of the den-
sity from the SCEC model over each interval. In Fig. 7(a), we show
the true and power-law shear-velocity structures. Considering the
discontinuous profile in eq. (9), we can compute the corresponding
phase velocities using the scalings presented in Appendix A. Similar
to the previous model, we define the frequency transition between
each power-law scaling by determining where the phase velocities
cross for each mode. As mentioned in Section 4.2, when α > 0.5, the
first overtone will dominate over the fundamental mode and, there-
fore, we will consider the first two modes to compute the analytical
ESD. In Fig. 7(b), we show the fundamental-mode Rayleigh-wave
phase velocities for the true seismic model and the various power-
law scalings. The various phase velocities cross around f ≈ 1 Hz
and f ≈ 1.55 Hz, at which the first higher order mode wavenumbers
are, respectively, 1/k ≈ 100 m and 1/k ≈ 300 m close to depth of
the discontinuity. We observe that the power-law scalings roughly
approximate the variations of the true phase-velocity model over
their own frequency range.

For the highly discontinuous velocity model, we show the nu-
merical time-series in Figs 8(a), (b) and (c). We observe that the
presence of a shallow discontinuity leads to a highly dispersive
fundamental-mode Rayleigh wave and the propagation of a high-
amplitude first-overtone Rayleigh wave. This is expected in dis-
continuous media such as shallow sedimentary basins (Bonnefoy-
Claudet et al. 2006; Rivet et al. 2015). In panels (d), (e) and (f), we
observe a frequency peak around f ≈ 1.3 Hz corresponding to the
high-amplitude first higher order mode Rayleigh wave and, at higher
frequencies, another peak around f ≈ 3 Hz owing to higher mode
Rayleigh waves.

In Figs 8(d), (e) and (f), we show the ESDs built from the piece-
wise power-law scalings of eq. (9) for the fundamental and first
Rayleigh-wave modes. We observe that by simply considering the
first overtone N = 1 along with the fundamental mode, we obtain a
good fit at low frequencies between the numerical and the analytic
Green’s functions. However, around the frequency bounds denoted
by the dashed vertical lines, we observe discrepancies in amplitude
in the transition zones between each piecewise power-law scalings
because of the rough approximation of the solutions. Indeed, power-
law scalings lead to constant non-dimensional amplitudes NR (Tsai

& Atiganyanun 2014) that cannot fully capture the amplitude varia-
tions of the true seismic model. Finally, around f ≈ 3 Hz, we observe
that a second energy peak is not captured by the analytical ESD.
This secondary peak is due to higher modes surface waves that
dominate over the first two modes in the f = [2.5, 4] Hz frequency
range.

5 C O N C LU S I O N S

In this paper, we investigated the capability of a fast semi-analytic
method to compute Rayleigh-wave energy spectra within elastic and
viscoelastic media with increasing shear-wave model complexity.
The method is based on the non-dimensionalization of the Rayleigh-
wave governing equations and provides an exact expression for
the phase and group velocities as well as the Green’s functions
in pure 1-D shear-wave power-law velocity models. We compared
energy distribution predictions from surface-wave Green’s func-
tions to high-order numerical solutions for an impulsive source.
The semi-analytic ESD captures well the main frequency peak and
the amplitude of the ESDs of the fundamental-mode Rayleigh wave
in both elastic and viscoelastic power-law structures. The reason-
able agreement between ESDs shows that the body-to-surface-wave
conversions and higher Rayleigh-wave modes do not have a strong
impact on the energy distribution in smoothly varying shear-velocity
structures. Attenuation plays an important role in the energy distri-
bution and the computation of the Rayleigh-wave quality factor and
its frequency dependence requires special attention when consider-
ing highly heterogeneous body-wave quality factors. Especially for
very low Q values, viscoelastic-induced velocity dispersion should
be carefully taken into account as it leads to a substantial change in
the phase and group velocities. At short distances from the source,
and for large shear-velocity depth gradients or low attenuation,
the low-frequency spectral response can be dominated by very high
mode surface waves that can be described by the power-law scalings.
More precisely, for a shear-wave power-law structure, we derived
an empirical frequency range where body-wave energy is domi-
nant f > 1

2α
f r
0 (QR), where f r

0 (QR) is the quality-factor depen-
dent fundamental-mode surface-wave peak frequency at a distance
r, for a quality factor QR from the source and α is the power defin-
ing the shear velocity profile. Also, for large values α > 0.5, the
first higher order mode Rayleigh waves will start to dominate the
energy spectrum and cannot be neglected anymore. Semi-analytic
non-dimensional Green’s functions can also provide an estimate of
the ESD for realistic 1-D shear velocity structures and complex
attenuation models. For velocity structures that are close to a piece-
wise power-law model, the semi-analytic approach can describe the
ESD using the first fundamental and first overtone only. The fre-
quency range of validity for each power-law scaling can be derived
from their phase velocities corresponding roughly to the depth sen-
sitivity of Rayleigh waves. Finally, highly discontinuous models can
also be approximated by a combination of power-law scalings. They
provide a good estimate of the amplitude and variations of the en-
ergy distribution although the predictions are quite poor around the
frequency bounds of each power-law scaling. Future studies should
focus on the assessment of the method to perform simple inver-
sions of surface-wave energy spectra to derive velocity models or
source mechanisms. Moreover, future papers should investigate the
ability of power-law scaling to model the horizontal component of
the energy distribution where Love waves are expected to dominate
(Bonnefoy-Claudet et al. 2006).
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A P P E N D I X A : N O N - D I M E N S I O NA L
PA R A M E T E R S I N S H E A R - V E L O C I T Y
P OW E R - L AW S T RU C T U R E S

In this appendix, we recall the main results of Tsai & Atiganyanun
(2014) regarding the expression of the Rayleigh-wave phase velocity
and amplitude in a shear-wave power-law structure. We consider a
shear-velocity power-law structure vs with a constant Poisson’s ratio
ν and constant density, such that

vs = vs,z0

(
z

z0

)α

, (A1)

where vs,z0 is the shear-velocity at depth z0. Then, we express the
phase velocity as

vc = ω

k
= vc,0

(
ω

ω0

)− α
1−α

, (A2)

where k = ω

vc
is the wavenumber, ω0 is the reference pulsation and

vc,0 the phase velocity at zero frequency such that

vc,0 = εc

(
vs,z0

(ω0z0)α

) 1
1−α

, (A3)

where εc is the phase-velocity non-dimensional parameter that
reads

εc = (ω′)
1

1−α

k ′ , (A4)

where ω′ = z0
β0

ω and k
′ = z0k . Then, we can express the Rayleigh-

wave group velocity as

vu = (∂ωk)−1 =

⎛
⎜⎝vc + α

1 − α

vs,z0

k ′ ω′

vc
2

⎞
⎟⎠

−1

= (1 − α)vc, (A5)

where ∂ω is the partial derivative along pulsation. Finally, the non-
dimensional Rayleigh-wave amplitude NR reads

N R
i j = 2r ′

i r
′
j

k ′ ∫ ∞
0 (r ′2

1 + r ′2
2 )dz′ , (A6)

where (r ′
i )i=1,2 = ri

z0
are the non-dimensional horizontal and vertical

Rayleigh-wave eigenfunctions and z′ = z
z0

. To illustrate how the

non-dimensional parameters εc, defined in eq. (A4), and NR, defined
in eq. (A6), change with power α we plot εc, NR for the fundamental
and the first modes in Fig. A1 for Poisson’s ratio ν = 0.25 and a
constant quality factor. We observe that the first overtone’s non-

Figure A1. Panel (a), non-dimensional parameter εc, defined in eq. (A4), for the fundamental mode (the thin orange line) and the first overtone (the thick blue
line) against power α for Poisson’s ratio ν = 0.25 and no attenuation. Panel (b), non-dimensional parameter NR, defined in eq. (A6), for the fundamental mode
(the thin orange line) and the first overtone (the thick blue line) against power α for Poisson’s ratio ν = 0.25 and no attenuation.
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Figure A2. Green’s function amplitude ratio against power α of the fundamental mode |G0| over the first mode |G1| for Poisson’s ratio ν = 0.25 and constant

quality factor such that |G0|
|G1| = N R

0 ε
5/2
c,1

N R
1 ε

5/2
c,0

, where the subscripts 0 and 1 correspond, respectively, to the fundamental and first Rayleigh-wave mode. The orange

dashed line corresponds to |G0|
|G1| = 1, that is, when the fundamental and the first modes have identical amplitude.

dimensional parameters show significantly larger variations than
the ones derived for the fundamental mode. Interestingly, in panel
(b), we note that for large α values the non-dimensional amplitude
of the first mode becomes larger than the fundamental one.

This is clearly visible in Fig. A2, where we plot the Green’s
function amplitude ratio of the fundamental mode |G0| over the first

mode |G1| such that |G0|
|G1| = N R

0ε
5/2
c,1

N R
1 ε

5/2
c,0

. We observe that for α > 0.4, the

first higher order mode amplitude cannot be neglected as |G1|�|G0|
for α > 0.4.

Finally, from the non-dimensional parameters N R
i j and εc, one

can compute Green’s functions and derive the frequency f r
0 for

maximum energy at a distance r for a given constant quality factor
QR. After cumbersome calculations, one obtains

f r
0 = 1

2π

(
vc,0

ω
−1/(1−α)
0

QR

r
(1 + 4α)(1 − α)

)1−α

. (A7)

In Tsai et al. (2012), the authors considered several assumptions
to derive a fully analytic model for the phase and group velocities in
a power-law medium: NR ≈ 1 and the Rayleigh-wave phase velocity
decays with depth proportional to e−kz where k is the wavenumber
and z is the depth. The method presented in this paper should be
preferred as no assumptions are used to derive the Green’s functions.

A P P E N D I X B : PAT H E F F E C T V E L O C I T Y
C O R R E C T I O N F RO M V I S C O E L A S T I C
P RO C E S S E S

To correctly model the energy distribution with Green’s functions,
one needs to properly account for attenuation. Viscoelastic pro-
cesses contribute to eq. (2) not only through the quality factor QR

but also through attenuation-induced physical dispersion, that is,
the frequency dependence of Rayleigh-wave phase and group ve-
locities. Indeed, low and/or strongly varying quality factors cause
significant velocity dispersion (Liu et al. 1976). To correct the model
for dispersive effects when attenuation is strong, we use the phase
velocity correction for Rayleigh waves introduced in Liu et al.
(1976), which we will refer to as the dispersive path correction (in
contrast to the initial non-dispersive velocities). This correction is
based on a Zener solid approximation, such that for each frequency,
we have 	vc

vc,0
= 1

π QR
ln( f

fm
), where 	vc = vc − vc,0 is the differ-

ence between elastic and viscoelastic phase velocities and fm is the
frequency at which the seismic velocity model is provided. The
effect of dispersion on velocity is visible in Fig. B1(a), where we
show both the non-dispersive (green) and dispersive (blue) phase
velocities against frequency for a given reference frequency fm =
0.01 Hz. In the viscoelastic case, we note that there is a substantial
difference between the phase velocities in elastic and viscoelastic
media, with phase velocities in the latter case having phase velocity
that increases with frequency to the limit vc → 2313 m s−1.

In order to study the impact of attenuation-induced dispersion
on wave propagation with distance, we focus on the distance-
dependent term only by computing the attenuation factor γ (r, f ) =
e− π f r

vu QR /
√

r for the non-dispersive and dispersive cases. We can
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Figure B1. Panel (a), elastic Rayleigh phase velocity profile (green) and viscoelastic Rayleigh phase velocity profile (blue) against frequency for the body-wave
quality factors given in Table 1. Panel (b), vertical velocity against frequency from numerical simulations (orange) and the theoretical model with the elastic
phase velocity profile (green dashed) and the theoretical model with the viscoelastic phase velocity profile (solid blue) for the simulation parameters presented
in Table 1, at various distances from the source r = 895, 1021, 1274 m. The theoretical velocity spectra Atheo (dashed green and solid blue) are computed from

the numerical solution Atheo(f, r0), at an initial station r0, such that Atheo( f, r ) = Anum( f, r0) × e−π f |r−r0|/vu QR

√
r0
r , where Anum(f, r0) is the velocity spectrum

at the initial receiver location r0 = 200 m.

then express the Green’s function solution Atheo at distance r from
the source as Atheo( f, r ) = √

r0 Anum( f, r0)γ (r, f ), where Anum(f,
r0) is the reference numerical solution at location r0 = 200 m. In
Fig. B1(b), we plot the numerical and theoretical vertical velocity
spectra, computed with the non-dispersive (referred to as ‘non-
dispersive path correction’) and dispersive (referred to as ‘disper-
sive path correction’) phase velocity profiles. We observe that the
spectra computed with the non-dispersive elastic velocity do not
capture well the amplitude, in this very simple homogeneous case,
with an error up to 10 per cent at a distance r = 1274 m from the
source, while the model with the dispersive path correction has less
than 5 per cent error on amplitude and peak frequency. The spectral
amplitude without path correction also tends to decrease faster than
the numerical solution. This discrepancy comes from the fact that
a lower shear-wave group velocity will lead to a lower Rayleigh-
wave group velocity and thus a larger value of the attenuation term
e−π f r/vu QR that will inevitably lead to an overprediction of the vis-
coelastic dampening.

A P P E N D I X C : P R E D I C T I O N S O F
H I G H E R M O D E S U R FA C E WAV E S
M A I N - F R E Q U E N C Y P E A K I N
S H E A R - V E L O C I T Y P OW E R - L AW
S T RU C T U R E S

Shear-velocity power-law structures exhibit two main-frequency
peaks in their ESDs: The fundamental-mode Rayleigh-wave peak f r

0

and the higher mode frequency threshold f0. To provide an estimate
of the frequency f0, we ran simulations with the same Poisson’s ratio
and various α ranging from 0.1 to 0.4. Other simulation parameters
are given in Table C1. Results are shown in Fig. C1 from which we

were able to express f0 as f0 ≈ 1
2α

f r
0 , where f r

0 is the surface-wave
peak frequency at distance r from the source. Note that f r

0 can be
found by finding where the derivative of the surface-wave energy
distribution is zero, that is, by solving ∂ f(Ev(f; x)) = 0, from eq. (3),
for f where ∂ f is the partial derivative along f. In a shear-velocity
power-law structure, Ev(f; x) can be analytically derived using the
phase and group velocity estimates given in Tsai et al. (2012).
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Figure C1. Comparisons between the numerically predicted (dashed) and analytically predicted (solid) higher mode frequency threshold f0 against α for
various distances from the source r = 263, 326, 389 m.

Table C1. Simulation parameters for the simulation of seismic waves in a
viscoelastic model with a shear velocity power-law structure. Lx and Lz are
the horizontal and vertical domain sizes, respectively, ρ is the solid density,
α is the shear velocity power-law coefficient, Qs and Qp are the shear and
compressional quality factors, respectively, and f0 is the dominant frequency.

Lx × Lz (m) ρ (kg m−3) Qs Qp f0 (Hz)

1500 × 600 1500 20 40 500
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