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Direct Observations of Surface-Wave Eigenfunctions
at the Homestake 3D Array

by Patrick Meyers,” Daniel C. Bowden," Tanner Prestegard, Victor C. Tsai,
Vuk Mandic, Gary Pavlis, and Ross Caton

Abstract Despite the theory for both Rayleigh and Love waves being well
accepted and the theoretical predictions accurately matching observations, the direct
observation of their quantifiable decay with depth has never been measured in the
Earth’s crust. In this work, we present observations of the quantifiable decay with
depth of surface-wave eigenfunctions. This is done by making direct observations of
both Rayleigh-wave and Love-wave eigenfunction amplitudes over a range of depths
using data collected at the 3D Homestake array for a suite of nearby mine blasts.
Observations of amplitudes over a range of frequencies from 0.4 to 1.2 Hz are con-
sistent with theoretical eigenfunction predictions. They show a clear exponential
decay of amplitudes with increasing depth and a reversal in sign of the radial-com-
ponent Rayleigh-wave eigenfunction at large depths, as predicted for fundamental-
mode Rayleigh waves. Minor discrepancies between the observed eigenfunctions and
those predicted using estimates of the local velocity structure suggest that the observed
eigenfunctions could be used to improve the velocity model. Our results confirm that
both Rayleigh and Love waves have the depth dependence that they have long been
assumed to have. This is an important direct validation of a classic theoretical result in
geophysics and provides new observational evidence that classical seismological sur-
face-wave theory can be used to accurately infer properties of Earth structure and
earthquake sources.

Introduction

The existence of surface waves has been well predicted
and described since at least 1885 by Lord Rayleigh
(Rayleigh, 1885). Specifically, the interaction of compres-
sional (P) and shear (S) waves with a free surface will set
up Rayleigh waves (from P and vertically polarized S) along
that surface, and low near-surface S-wave velocities will
result in Love waves (from horizontally polarized S). The
surface-wave propagation velocities and amplitudes depend
on subsurface properties in a predictable manner. Surface
waves have been observed and used in many studies in the
Earth sciences, for example, to constrain crustal properties
from surface-wave dispersion (e.g., Dziewonski and
Anderson, 1981; Shapiro et al., 2005) or ellipticity (e.g.,
Nakamura, 1989; Lin et al., 2008), to image and understand
earthquake source processes (e.g., Duputel et al., 2012), and
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to better understand the strength of shaking that may occur in
future earthquakes (e.g., Kawase and Aki, 1989).

Because of these applications, the nature of surface-
wave propagation is well accepted in the literature. However,
one of the defining characteristics of these surface waves,
that they decay in amplitude in an exponential manner as a
function of depth, has never been directly observed for the
Earth’s crust. This decay in amplitude is described by the
eigenfunctions that result from solving the equations of
motion (e.g., Takeuchi and Saito, 1972; Aki and Richards,
2002), and actual particle-motion amplitudes should exactly
match these expectations. Unfortunately, most seismic obser-
vations are constrained to the Earth’s surface, and borehole
instruments have generally been too sparsely spaced for the
direct observation of surface-wave eigenfunctions to be
clearly observed. Although fault-zone-trapped waves, which
are somewhat analogous to surface waves, have been
observed (e.g., Li and Leary, 1990) and ambient seismic
noise is generally observed to decrease with depth (e.g.,
Peterson, 1993; Mandic et al., 2018), neither of these
observations is a direct measurement of surface-wave
eigenfunctions.
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(a) The location of the Homestake seismometer array (large triangle) and the estimated origin of the mine blasts used for the

analysis (dots). The mine blasts are all estimated as coming from the Powder River Basin in Wyoming. The points on the map in (b) show the
sensor locations in and around the Homestake Mine. Lines indicate drifts in which the sensors were placed at varying depths.

In this article, we confirm that observations of surface-
wave amplitudes match expectations as a function of depth.
These observations are collected from an array of instru-
ments in and around the Sanford Underground Research
Facility, previously the Homestake Gold Mine, in South
Dakota, United States (Mandic et al., 2018). An array of
24 broadband instruments (15 underground and 9 above
ground) was deployed in a 3D array geometry in the other-
wise mostly abandoned shafts of the mine, covering a vol-
ume roughly 1500 m in depth and 5 km in lateral width. A
map similar to the one in Mandic et al. (2018) is shown in
Figure 1b. Blasts from nearby mines, on average roughly
130 km away, provide a source of seismic excitations used
for our observations of surface-wave amplitudes as a func-
tion of depth, in the 0.4-1.2 Hz frequency range. These
observations are compared with predictions of both
Rayleigh- and Love-wave eigenfunctions from two different
approaches: (1) by describing the eigenfunctions with a rel-
atively simple biexponential model that would perfectly
describe the decay with depth for half-space or power-law
velocity models (Haney and Tsai, 2015) and (2) by con-
straining a 1D velocity profile from ambient-noise cross cor-
relations and then numerically predicting eigenfunctions. As
will be shown, the classic formulations of surface-wave
eigenfunctions accurately describe the observations.

Methods

Observational Methods

The Homestake array is situated in a region of the
United States with relatively few local earthquakes, but the
Powder River Basin 130 km west of the mine is a very active
coal-mining district. The array recorded dozens of signals
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created by mining explosions from the Powder River Basin
every workday. Typical seismograms created by these explo-
sions were shown by Mandic et al. (2018) along with a map
of event location estimates for six months of the experiment.
The event locations were estimated from a combination of
phased array measurements on P waves combined with P-
and S-phase time picks made on array stations and a sparse
virtual network assembled from open data we obtained from
the Incorporated Research Institutions for Seismology data
center. Using the Antelope software package, we refined
the initial P and S picks from “dbdetect” using “dbloc2,”
an earthquake location program, and “dbxcor,” a seismogram
cross-correlation program. Details on the procedures used to
prepare the event catalog used here can be found in Mandic
et al. (2018).

We used a subset of signals from 28 mining explosions
that were recorded in July 2015. The estimated location of
these blasts along with the location of the Homestake array
are overlaid on a map of the upper midwestern United States
in Figure 1la.

For each transient event, we rotate to radial (i.e.,
longitudinal) and transverse coordinates using the estimate of
the blast location. We filter the waveforms to the frequency
band from 0.4 to 1.2 Hz because this is where most of the
surface-wave power is concentrated for the mine blasts
(explained more later) and then calculate Fourier transforms
in 10 s segments over a broad time window around the
expected surface-wave arrival time. We refer to the radial
data point at frequency f and time ¢ in seismometer i located
at depth z; as R;(f.1; z;) and the corresponding vertical and
transverse data points as V,(f,;z;) and T;(f.1;z;).

To confirm that Rayleigh waves are dominating our
signal on the radial and vertical channels, we identify times
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(a) Example of analysis applied to surface station seismometer vertical and radial channels for an event on 23 July 2015. (Inset)

The signal from 80 to 90 s bandpassed between 0.4 and 1.2 Hz and the vertical trace clearly following the radial trace. (b) The vertical-to-
radial phase ¢gy for the same station over the same time frame. We use 10 s discrete Fourier transforms. The color bar is normalized such that
white indicates a phase of —z/2, which corresponds to retrograde motion.

and frequencies when the relative phase between the chan-
nels is consistent with retrograde particle motion along the
radial direction. This phase is measured by cross correlating
the horizontal and vertical channels:

] o

The asterisk indicates complex conjugation, “Im” indicates
the imaginary part of the cross correlation, and “Re”
indicates the real part. Figure 2a,b shows the radial and ver-
tical displacements of one example event and the phase as a
function of frequency in each 10 s window. Because white
regions of this plot indicate the desired phase of —7z/2, we
observe evidence for retrograde Rayleigh-wave motion
between 70 and 130 s and 0.4 and 1.2 Hz. With similar obser-
vations for all other events, we restrict further analysis to this
frequency range and times when there is clear evidence for
vertical and radial motions that are close to being exactly out
of phase.

In addition to simply confirming the presence of
Rayleigh waves in our data, we restrict our measurements
to these periods of retrograde (or later, also prograde) particle
motion by projecting the data onto the phasor with the appro-
priate phase angle:

(R} (f, 1;2) x Vi(f. 1;2))
Re(R} (f,1;2;) x Vi(f.1;2))

drv(f. 7)) = arctan[

Ri(f.1:2) = =|Ri(f. £:2;)| x Im en. (2)
in which vertical lines indicate modulus. The minus sign is
used to impose the condition that measurements consistent
with retrograde motion are positive, whereas those consistent
with prograde motion are negative. R;(f, ; z;) is now a real-
valued quantity. The fact that the radial component will be
negative at some depth is consistent with the analytic theory
of eigenfunctions, and the difference between prograde and
retrograde motions is important to note in regions with a
strong velocity contrast (e.g., Tanimoto and Rivera, 2005)
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or may be used to distinguish the fundamental mode from
higher order modes of propagation (e.g., Bote et al., 2016;
Gribler et al., 2016).

Before collecting the amplitudes from all events, we
normalize the Rayleigh-wave amplitudes within each event
such that the radial component of motion will be ~1 at the
surface. The average of radial measurements from the nine
surface stations for a given time and frequency is used as
normalization for all stations’ radial and vertical compo-
nents. Normalized amplitudes that remain greater than 1.5
are considered outliers and are removed; this removes ~15%
of the individual 10 s observations.

To estimate the Love-wave eigenfunctions, we use data
from the same time period as for Rayleigh waves and use a
similar procedure for the transverse data: normalize all data
points by the mean of the transverse channel on the surface
for the corresponding data point and implement a similar
restriction on the normalized amplitude of 1.5. It may be
expected that Love waves travel at a slightly different veloc-
ity from Rayleigh waves, but the difference in arrival time is
small compared with the windows of time used. The final
observations are shown in the Results: Observations and
Model Estimates section.

Eigenfunction Model Parameters for a Simple Model

Our observations indicate a decay with depth that may
be consistent with standard models of surface-wave eigen-
functions, and we first test this with a model that is as simple
as possible. Boore and Joyner (1997) showed that near-
surface geology can often be well approximated with
shear-wave velocities that increase as a power-law with
depth, and Haney and Tsai (2015) show that a biexponential
description of surface-wave eigenfunctions is appropriate for
such a model. A similar parameterization can be used for the
Rayleigh-wave equations of motion in a half-space, but the
fact that it is appropriate for a power-law model as well
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allows for a more flexible range of coefficients and eigen-
function shapes.

We use our measurements to estimate the parameters in
the following biexponential model for Rayleigh waves’
radial and vertical displacements my and my and a single-
exponential model for Love waves m; . These models depend
on a set of intrinsic model parameters 6 and a; , the depth z,
and the frequency f as

mp(f,z:08)= (exp[_zﬂf < Ra (lf)} +Arexp [_ZﬂfZC:(Zf)D
1

"1+ Az v

my(f,z2:0g) = (exp[—27rfzc:(3f)] +Ayexp [—ZﬂfZCRagf)})

x th
1+Ay

(4)

mp(f,z;a) = exp [—Zﬂfz (5)

ay :|
ct(f)]
The full list of parameters to be estimated from observations
for Rayleigh waves is @ = (N, AR, Ay, a;, a,, as, a,), and
for Love waves, the single parameter is a; . Our observations
of mg, my, and m; are the amplitudes averaged for all events
and all stations at a given depth and frequency. The phase
velocities for Rayleigh and Love waves cg(f) and c;(f)
are estimated using ambient-noise correlations, respectively
(see the Eigenfunction Predictions from a Velocity Model
section). The assumption that the parameters 6; and a; do
not change with frequency is intrinsic to the theoretical
model outlined by Haney and Tsai (2015) and in principle
could be relaxed, but we keep the model here as simple
as possible.

We use the MultiNest package (Feroz et al., 2009) to
perform a nested sampling analysis to estimate these model
parameters. MultiNest is commonly used in the astro-
physics community, is designed to efficiently sample multi-
modal distributions and large parameter spaces, and offers
robust Bayesian evidence estimates. We discuss further
details related to the nested sampling approach in the
Appendix along with more details related to the parameter
estimates. The results of this model are shown in the
Results: Observations and Model Estimates section.

Eigenfunction Predictions from a Velocity Model

We can also estimate the eigenfunctions for a more
arbitrary velocity model, following the ambient-noise cross-
correlation methodology that is now relatively commonly
used to recover subsurface velocity estimates. We will use this
approach as an independent check of the approach presented
in the previous section, so we will use velocities estimated
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directly from ambient-noise cross correlations rather than
from the mine-blast data used earlier. Ambient-noise cross
correlations are collected for each station pair using 1 yr of
data, from 1 June 2015 to 31 May 2016. Standard methods of
time-domain normalization with a 2.56 s running window and
spectral whitening for three-component data (i.e., Bensen
et al., 2007; Lin et al., 2008) are used to reduce nonstationary
signals in the ambient noise. The cross correlations for a given
pair are computed for each component (vertical-vertical,
north—north, and east—east) and then the horizontal compo-
nents are rotated to recover radial and transverse motions used
for surface-wave observations.

To develop a 1D model for shear-wave velocities,
compression-wave velocities, and density, a starting model
is iteratively perturbed until synthetic surface-wave velocity
dispersion curves best match observations. Dispersion curves
are observed from the noise cross correlations through multi-
ple narrow, Gaussian bandpass filters using the automated
FTAN package (as described by Levshin and Ritzwoller,
2001). Between 0.2 and 7 Hz. Rayleigh and Love group
velocities were clearly observed, as were Rayleigh phase
velocities, shown in Figure 3b—d respectively, but the Love
phase velocities reported showed very high variability and so
were not used in the subsequent analysis. A starting 1D
shear-wave velocity model is estimated using the nearest
node of the relatively coarse U.S.-wide model of
Schmandt et al. (2015) below 3 km depth and the smoothly
varying “very-hard rock” profile of Boore and Joyner (1997)
above 3 km. The computer package Computer Programs in
Seismology by Herrmann (2013) is used to invert for a new
1D velocity model, shown in Figure 3a. We use 12 iterations,
updating the 1D velocity model to reduce the misfit between
observed and predicted dispersion curves (final dispersion
curves are shown in Fig. 3b—d). To understand our final
velocity model’s resolution with depth and the dependence
on the choice of background starting model, 1000 realiza-
tions of the starting model are perturbed by an amount drawn
from a Gaussian distribution with standard deviation of 10%
and the inversion repeated. The gray confidence interval in
Figure 3a shows the 1st and 99th percentiles of these output
models, suggesting that even down to 2.5 km, the model is
relatively well constrained. Also, there appears to be a low-
velocity zone around 1.5 km depth (which is the depth of our
deepest stations) that is less well constrained. Nevertheless,
we believe this model provides a reasonable estimate of seis-
mic velocities in the region and is sufficiently complex to
produce numeric eigenfunctions that may deviate from the
simpler biexponential fits described in the previous section.

We finally note that our model is relatively smooth as a
function of depth and therefore only approximately fits the
observed dispersion data. More sophisticated approaches to
solve for 1D velocity structures exist in the literature (e.g.,
Bodin et al., 2012), but this is not the focus of this study
because further changes to the velocity model will have at
most a second-order effect on the actual eigenfunctions
predicted (Haney and Tsai, 2015).
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(a) The velocity model resulting from ambient-noise travel-time observations and the estimated and measured dispersion

curves for (b) R-wave group, (c) L-wave group, and (d) R-wave phase velocities. Gray confidence intervals in all plots represent the
Ist and 99th percentiles of models in which the starting model was perturbed by £10%. 1o error bars on the observed group, and phase

velocities are also shown in (b—d). Obs., observed; Pred., predicted.

Results: Observations and Model Estimates

An example of the normalized measurements for radial,
vertical, and transverse data at 0.9 Hz is shown in Figure 4.
Similar plots can also be made for each 0.1 Hz frequency
band between 0.4 and 1.2 Hz. Measurements are grouped
at distinct depths because stations were deployed at the sur-
face or only at particular levels within the mine. These mea-
surements are qualitatively consistent with what is expected
for surface-wave eigenfunctions. The radial component
shows an exponential decay in depth and subsequent sign
flip, the vertical component shows an initial growth in ampli-
tude followed by a decay at larger depths, and the transverse
data points also show an obvious decay with depth.

Figures 5 and 6 show a comparison between the data
points estimated from blast events, the simple biexponential
model (single exponential for Love waves), and the indepen-
dent estimate of the surface-wave eigenfunctions made using
the velocity model discussed in the Eigenfunction
Predictions from a Velocity Model section. In both figures,
we represent the fit of the simple exponential model by draw-
ing randomly from the posterior distribution for the param-
eters in the model, using these values to construct a
realization of the model, and then repeating this several hun-
dred times. We then fill between the 10th and 90th percen-
tiles of those realizations evaluated at each depth. This results
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in a very narrow line, as we fit across several frequencies and
depths. The lines for the radial and transverse fits are espe-
cially narrow at shallow depths because these models are
fixed to be one on the surface. The posterior distributions and
mean values for the parameters that govern the shape of the
biexponential model are presented and discussed in the
Appendix.

For Rayleigh waves, the overall shape of the biexponen-
tial fits using the nested sampling analysis tracks the data
points qualitatively, although there are distinct differences
between the depth dependence predicted by the model and
the data points in several places. Some of this misfit is likely
due to the simplicity of the biexponential model, which fixes
the value of the biexponential parameters to be the same for
each frequency. Again, one of the fundamental assumptions
of this biexponential model is that the velocity increases as a
power law with depth (Boore and Joyner, 1997; Haney and
Tsai, 2015). Such a power-law velocity model assumption is
clearly a simplification, with Homestake’s geology being
more complex (Noble er al., 1949; Pariseau et al., 1989,
1995, 1996).

The more complex velocity model estimated from the
ambient-noise inversion for structure matches the amplitude
observations better at some depths and frequencies despite
being a completely independent test (i.e., different data, dif-
ferent method—velocity instead of amplitude observations).
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Figure 4. (a) The distribution of radial measurements shown by
the blue violin plot for measurements at 0.90 Hz. Red and orange
points indicate the median and mean of the distribution, respec-
tively, and black bars indicate the 16th and 84th percentiles of
the distributions shown in blue. (b,c) The same except for the ver-
tical and transverse measurements.

Comparing the velocity models themselves, the inferred
velocity model shown in Figure 3a also shows that a simple
power-law model is only sufficient as a first-order approxi-
mation. Even this model inferred from ambient noise, how-
ever, is also undoubtedly smoother than true geologic
discontinuities would warrant and represents a 1D average
over the entire region of the array. We also note that some
of the deeper observations are fit better by the simple biex-
ponential fit (e.g., at ~1500 m in Fig. 5e). In this case, we
suspect we suffer from a lack of resolution in the low-
velocity zone at this depth, so perhaps the direct eigenfunc-
tion observations and fitting is still beneficial. However, both
models match the observed mine-blast data reasonably well,
suggesting that the theory of Rayleigh waves itself is quan-
titatively accurate.

In the case of Love waves in Figure 6, both models again
fit the data reasonably well. The data show a potentially more
variable shape in the shallower measurements and higher fre-
quency estimates than a simple exponential decay. Although
the error bars on the individual observations are large enough
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Figure 5. (a—e) Rayleigh-wave eigenfunction measurements
and estimates at frequencies between 0.4 and 1.2 Hz. In each panel,
the scatter plot points are the radial (R) and vertical (V) measure-
ments from the mine blasts. Curves outlined with dashed lines are
generated using random draws from the posterior distributions for
the parameters of the biexponential models defined in equation (3)
to construct realizations of the biexponential model. The widths of
those lines represent the 10th and 90th percentiles at each depth of
the generated models. Curves outlined in solid lines represent the
estimate of the eigenfunctions using ambient-noise correlations and
inversion discussed in the Eigenfunction Predictions from a
Velocity Model section. The width of these curves represents the
10th and 90th percentiles for the inversion results from the 1000
random perturbations to the starting model.

to each individually be consistent with an exponential decay,
the variability does appear consistent in both the observations
and in the numerically generated eigenfunctions that are
estimated from the ambient-noise velocity inversion. The
exponential fit can describe the overall shape across the full
range of frequencies, but the simple single-exponential shape
cannot capture any sort of variability in the near surface that
might arise in higher frequency measurements (Fig. 6e). For a
deeper structure, then, the model-fitting method to be pre-
ferred depends on one’s confidence in the background starting
model or on one’s confidence in the power law with depth-
dependence assumption in the absence of other information.

The comparison of these two methods to the observatio-
nal data also serves to highlight the differences in the
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Figure 6. (a—e) Love-wave eigenfunction measurements and

estimates at frequencies between 0.4 and 1.2 Hz. In each panel,
the scatter plot points are the transverse (T) measurements from
the mine blasts. Curves outlined with dashed lines are generated
using random draws from the posterior distribution for the single
exponential model for the Love-wave eigenfunction to construct
realizations of that model. The width of those curves represents
the 10th and 90th percentiles of the estimated models at each depth.
Curves outlined with solid lines are the estimates made using ambi-
ent-noise correlations and inversion discussed in the Eigenfunction
Predictions from a Velocity Model section. The widths of these
curves represent the 10th and 90th percentiles for the inversion
results from the 1000 random perturbations to the starting model.

strengths and weaknesses of the different methods for
estimating surface-wave eigenfunctions. It confirms that tra-
ditional inversion methods based on ambient-noise correla-
tions are well founded based not just on theoretical grounds
but also on direct observational grounds. The comparison
with a simple model that assumes a power-law S-wave veloc-
ity depth profile serves to further highlight the strengths and
weaknesses of the inversion method.

Conclusions

Despite the success of the Earth structure estimation
based on seismological surface-wave theory, one of the fun-
damental predictions of the theory itself—the decay of
amplitude of those waves with increasing depth—has not
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been directly measured to this point. Using data from mine
blasts observed by the Homestake 3D array, we presented
direct observational evidence for that decay, along with val-
idation of the predicted flip from retrograde to prograde par-
ticle motion for Rayleigh waves at the appropriate depth.

We tested measured decay properties with predictions
from two isotropic, radially symmetric Earth models. The
first, a simple model based on a power-law shear-wave veloc-
ity depth profile, shows qualitatively reasonable results. The
second, an inversion technique that used ambient-noise cross
correlations to estimate that depth profile, served as an inde-
pendent verification that the general tenets of surface-wave
theory can be used to independently verify the surface-wave
eigenfunctions. Extensions of this work could include
directly observing the depth dependence of ambient-noise
correlations. To directly observe the depth dependence of
either the mine blasts or ambient noise, the 3D nature of
the Homestake array is vital and thus serves a unique purpose
among seismometer arrays.

Data and Resources

Data presented here were collected at the Homestake 3D
seismometer array. The data are available at the Incorporated
Research Institutions for Seismology (IRIS) Data Management
Center available at www.iris.edu (last accessed July 2018), des-
ignation X6. Finding a model to fit dispersion data was done
using Computer Programs in Seismology, v.3.30, at http:/
www.eas.slu.edu/eqc/eqecps.html (last accessed March 2016).
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Appendix

Parameter Estimation Methods

We use our amplitude and phase measurements from
mine blasts to estimate the parameters of a biexponential
model for the Rayleigh-wave eigenfunctions and an expo-
nential model for the Love-wave eigenfunction. We use mp
and my to refer to the biexponential models for the Rayleigh-
wave radial and vertical eigenfunctions and m; for Love
waves. These models depend on a set of intrinsic model
parameters 6 and a;, the depth z, and the frequency f.
These parameters are related by equation (3) that is the
forward model we use for the inversion.

We use the mine-blast data to estimate the best-fit
parameters in the biexponential model 6; = (N, Ag, Ay,
a,a,,as,a,) and a; for the single exponential Love-wave
model.

We use the Mul t iNest package, detailed in Feroz et al.
(2009), to perform the parameter estimation for 6.
MultiNest is commonly used in the astrophysics commu-
nity and is designed to efficiently sample multimodal distri-
butions and large parameter spaces. It also offers robust
Bayesian evidence estimates, which we do not use here.
The posterior probability distribution is given by Bayes’
theorem

p({r. v}0) p(6)
S d0p({7.7}10)p(0)’

pOr,v}) = (A1)

in which r and v are the average normalized displacements
over all measurements at a given depth and frequency. They
are shown, for example, as the orange points in Figure 4. The
likelihood function for the Rayleigh-wave eigenfunctions
p({r, v}|6) is taken to be a Gaussian

Inp({7.v}|0)

_ 1 [F(f.2)—me(f.z:0)F [a(f,z)—qu,z;w)
;Z( o3 (f.2) N o2(f.2) '

2
(A2)

We assume that the prior probability distribution p(6) can
be split into the product of independent Gaussian prior prob-
ability distributions on each individual parameter. We use
estimates of these parameters from Haney and Tsai (2015)
to inform the Gaussian prior probability distributions. The
definition of our parameters differs slightly from those in
Haney and Tsai (2015), but we can generate prior informa-
tion on each parameter in our model using a combination of
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Figure Al.

Prior (dashed) and posterior (solid) distributions for each parameter in (a—g) the simple Rayleigh-wave biexponential model

and (h) the Love-wave exponential model. The parameter associated with each distribution is indicated below each panel.

parameters defined in that paper. We then widen the uncer-
tainty on those parameters significantly to allow for sufficient
exploration of the parameter space, given that our situation is
likely different from the theoretical one considered in that
paper.

The results for the estimates of each parameter are
summarized in Table A1, and Figure A1l shows the prior and
posterior distributions on each individual parameter.

Table A1

Parameter Estimation Results and Prior Information for
R-Wave and L-Wave Eigenfunction Parameters

Standard Prior Prior Standard
Parameter Mean Deviation Mean Deviation

Ag —0.83 0.06 —0.89 0.1

a, 0.80 0.06 0.84 0.1

a, 0.66 0.06 0.77 0.1

Ay —0.83 0.07 -0.92 0.1

as 0.54 0.04 0.83 0.3

ay 0.73 0.05 0.92 0.3
N, -0.78 0.02 -0.59 0.2

ap* 0.26 0.02 0 3

*This parameter is used in the Love-wave model.
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