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Supplemental Material

Historical seismic data are essential to fill in the gaps in geophysical knowledge caused
by the low rate of significant seismic events. Handling historical data in the context of
geophysical inverse problems requires special care, due to the large errors in the data
collection process. Using Oldham’s data for the discovery of Earth’s core as a case study,
we illustrate how a hierarchical Bayesian model selection methodology using leave-
one-out cross validation can robustly and efficiently answer quantitative questions
using even poor-quality geophysical data. We find that there is statistically significant
evidence for the existence of the core using only the P-wave data that Oldham effec-
tively discarded in his discussion.

Introduction
Seismologists are highly motivated to study historical data due
to the long timescales of geophysical processes compared to the
human lifespan, and especially compared to the proliferation
of modern digital instrumentation. A crucial consideration in
seismology is that both the quantity and quality of seismic data
are ever increasing, and that as the density of instrumentation
increases, so too does our ability to accurately locate events in
space and time and the number of useful recorded events
greatly increase. When dealing with historical data, we must,
therefore, unfortunately contend with the reversal of these
trends, so that we are left with fewer data of poorer quality.
Overcoming these deficiencies requires careful treatment of
noise in the data. The required tools are provided by Bayesian
analysis, which allows us to rigorously derive posterior prob-
ability distributions for models given observed data and explic-
itly quantified priors (Tarantola, 2005). The ability of Bayesian
analysis to quantitatively encode a priori information is espe-
cially important for historical data, where the information pro-
vided by the data is relatively uninformative.

In this study, we focus on a particular type of data—pairs of
station–receiver distance and travel times from earthquakes.
These data have long been central to geophysical imaging,
especially before the advent of computationally feasible wave-
form inversions. Because of the computational expense of sim-
ulating waveforms and the requirement that waveform
methods have an accurate starting model, seismic tomography
from travel-time data still holds a central position in the hier-
archy of geophysical methods. When dealing with travel-time

data, the tomographer’s hope is that errors in the space–time
location of an earthquake do not significantly contribute to
the observed residuals used for inversion, or that they may
at least be minimized by some relocation method. For histori-
cal data, the errors are often so large as to make this impos-
sible, so any analysis requires that we explicitly handle errors
in both distance and time. Classical regression methods such
as orthogonal distance regression can handle this case when
the model to be fitted is smooth and the ratios between the
errors for distance and time are known (Boggs and Rogers,
1990). However, as the error ratio is generally not known,
a full analysis requires marginalizing over all possible reason-
able combinations of errors. An analytical solution to this
problem for linear models and specific noninformative priors
is given in a manuscript by Jaynes (1999), left, like much of
his work, unfinished by his death. For nonlinear models and
arbitrary priors, a numerical approach is required. For this
study, we present a Bayesian analysis for nonlinear models
of imprecise data using Markov chain Monte Carlo (MCMC)
sampling and show how to incorporate it into a model selec-
tion framework. We apply the model selection framework to
some of the most historically important data ever presented in
seismology—the famous travel-time curve of Oldham (1906),
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demonstrating how model selection can make a concrete case
for the seismic observation of the Earth’s core using only a
subset of Oldham’s data.

It is well known in the seismological community that Oldham
provided the first strongly accepted seismic evidence for the
Earth’s core in his seminal paper The Constitution of the
Interior of the Earth, as Revealed by Earthquakes (Oldham,
1906), for which he is generally credited with the seismic discov-
ery of the core (Brush, 1980). Various geophysical arguments
throughout the 1800s had suggested a core, most notably the
arguments of Wiechert, which determined the parameters of a
core model from geodetic observations combined with the cal-
culated moments of inertia of the Earth (Wiechert, 1897).
However, direct observation of the core was unavailable until
the development of quantitative seismology. Oldham provided
a travel-time curve for primary and secondary phases derived
from teleseismic earthquake records and correctly postulated
their mechanical behavior as being those of P and S waves,
respectively. The curvature of travel time strongly suggested to
him that the waves traveled deeply in the Earth and were there-
fore capable of informing us about properties far into the interior.
In the travel-time curve, there is an apparent break in the behav-
ior of the curves at around 120° epicentral distance, from which
Oldham inferred the existence of the core. The change in char-
acter is much more apparent for the secondary arrivals than for
the primary arrivals; indeed, Oldham states that it would have
“probably remained undetected were it not for the very conspicu-
ous alteration in the case of the second-phase waves.” (Oldham,
1906, p. 471). As such, Oldham predicated most of his argument
on the secondary arrivals. Unfortunately, immediately after the
publication of the original paper it became apparent that the
change in secondary arrival behavior was in fact caused by
the difference between S and SS phases, and the apparent large
jump in travel time was not due to transmission through the core
—consequently Oldham has to a certain extent been lauded for
his discovery of the Earth’s core under false pretenses (Brush,
1980)! Figure 1 shows Oldham’s data, taken from Oldham
(1906, table 1) for averaged points and digitized from Oldham
(1906, fig. 1) for nonaveraged points, and overlaid with modern
travel-time curves from the ak135 model (Kennett et al., 1995). It
is apparent that the later primary phase data are likely core inter-
acting P phases of the PKP family. However, the scatter is
extreme for the primary arrivals, and it is difficult by eye to con-
fidently claim that there is any meaningful change in the travel-
time curve. It is, therefore, a point of historical interest whether it
is in fact possible to deduce the seismic existence of the core using
only the primary (P) data presented in Oldham’s paper. If we can
show that there is a statistically significant change in behavior of
the P travel-time curve, then Oldham’s deduction stands up even
without the secondary (S, SS) data. Because of the highly impre-
cise nature of Oldham’s data, this question provides an excellent
case study for the handling of historical data using hierarchical
Bayesian methods.

Data and Methodology
Oldham’s P-phase travel-time data consist of distances d and
times t. To normalize the data to the interval (−1, 1) for curve
fitting, we subtract the mean and divide by the range of both d
and t.

We treat the question of detection of the core as one of
quantitative Bayesian model selection. In particular, we pro-
pose several models for the data, some containing only one
predicted travel-time curve, and some containing two. Following
Oldham, we infer the presence of the core if a candidate model
with two disjoint travel-time curves is significantly better at pre-
dicting the data than models with only one curve. This decision
criterion (i.e., whether to choose the model that has the best pre-
dictive performance) is a philosophical choice—for instance, if
the true data generating process was one of the candidate mod-
els, it is not guaranteed that we would recover it (Shao, 1993).
For geophysical data, however, the true data generating process
is almost always unavailable and not included as a candidate;
selecting a model that best predicts the observations is often the
most sensible choice from a practical standpoint. The predictive
criterion is data driven and does not explicitly penalize model
complexity, but instead relies on the tendency of unnecessarily
complex models to overfit the data and, therefore, perform
poorly at prediction for unseen data.

As mentioned before, Oldham’s data are extremely impre-
cise both in time and epicentral distance compared to modern
standards. As such, treating the data properly requires that we
handle unknown errors on both axes. As earlier mentioned,
frequentist methods such as orthogonal distance regression
can fit curves to data with errors in both independent and
dependent variables but require a priori knowledge of the

Figure 1. Data from Oldham (1906), with modern travel-time
curves from ak135 overlaid (Kennett et al., 1995). Assignments
to primary and secondary arrivals are from Oldham.
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relative error. In contrast, hierarchical Bayesian methods allow
us to set up the unknown error standard deviations σd and
σt in both distance and time, respectively, as parameters that
are inverted, for along with the parameters describing the
travel-time model—as these parameters describe the form of
the model likelihood and prior distributions they are referred
to as hyperparameters in the Bayesian geophysical literature
(Malinverno and Briggs, 2004). The model parameters are there-
fore m, describing the form of the fitted travel-time curves, and
σd and σ t . The functional form of the travel-time curve, includ-
ing any jumps, is given by f �d;m�. We assume that the model
parameters m are a priori independent from σd and σt because
making observations should not impact the type of models we
propose for the travel-time structure, and we also assume that σd
and σ t are independent because the scales of the errors in dis-
tance and travel time are not correlated.

To compare the predictive performance of different models
and determine if there is enough evidence in Oldham’s P
arrival to indicate the existence of the core, we must first derive
the posterior distribution for the parameters of the different
models given the observed data. From Bayes’ rule, the posterior
distribution is given by

EQ-TARGET;temp:intralink-;df1;41;457

p�m; σd ; σ tjd; t� ∝ p�d; tjm; σd ; σt�p�m; σd ; σ t�
� p�d; tjm; σd ; σt�p�m�p�σd�p�σt�; �1�

assuming independent priors for m, σd , and σ t . Both t and d
have significant noise, so we represent the relation between
them as

EQ-TARGET;temp:intralink-;df2;41;353t � f �d� ed ;m� � et ; �2�

in which ed and et are the unknown measurement errors in
distance and time, respectively. This formulation implicitly
assumes errors in distance and time are independent, which
given the majority of earthquake origins in Oldham (1906) are
from local reports, rather than by triangulation from travel
time, is not unreasonable. As we are ranking different func-
tional forms f , we do not include model uncertainty in this
analysis.

To write out the posterior, we introduce dummy variables
D � d� ed and T � f �D;m�; from a Bayesian standpoint,
D represents the unknown “true” distances in Oldham’s data
and T the corresponding “true” times predicted by the travel-
time curve. T is a deterministic function of D and m so
p�·jD;m� � p�·jT�. Assuming that D is independent of m and
given our earlier assumption that uncertainties in d and t are
independent, we can write the likelihood as a marginalized dis-
tribution over D:

EQ-TARGET;temp:intralink-;df3a;41;93p�d;tjm;σd ;σt��
Z
p�d;tjD;m;σd ;σt�p�D�dD �3a�

EQ-TARGET;temp:intralink-;df3b;308;730 �
Z
p�djD;m;σd�p�tjD;m;σt�p�D�dD �3b�

EQ-TARGET;temp:intralink-;df3c;308;713 �
Z

p�djD; σd�p�tjT; σt�p�D�dD; �3c�

allowing us to write a fully decoupled marginal posterior

EQ-TARGET;temp:intralink-;df4;308;652

p�m; σd ; σtjd; t�

∝
Z

p�djD; σd�p�tjT; σt�p�m�p�σd�p�σ t�p�D�dD: �4�

The full posterior, including the dummy variables D, can be
written by demarginalizing equation (4) and applying Bayes
theorem to obtain

EQ-TARGET;temp:intralink-;df5;308;547p�m; σd ; σt ;Djd; t� ∝ p�Djd; σd�p�tjT; σt�p�m�p�σd�p�σ t�:
�5�

The hierarchical parameterization used in this study may cause
difficulties in efficient MCMC sampling due to the structure
of the posterior—we discuss a method to avoid this issue in
the supplemental material. The inclusion of noise in the inde-
pendent variable d means that the final inverse problem has a
free parameter corresponding to every data pair �di; ti�,
plus those used to specify the error scales σd and σ t and the
model variablesm, meaning that the problem is fundamentally
underdetermined and requires careful selection of priors. In
addition, as the posterior is relatively high-dimensional, ex-
plicit integration over it is intractable. We use MCMC to cal-
culate integrals with respect to the posterior, specifically using
Hamiltonian Monte Carlo (HMC) to sample the high-
dimensional posterior efficiently (Neal, 2011).

Once the posterior distributions for the candidate models
are determined, a metric for comparing them for model selec-
tion must be defined. To determine the relative performance
of the candidate models, we use leave-one-out cross validation
(LOO-CV). LOO-CV estimates the predictive performance of
a model by removing datums from the observations one at a
time, fitting the model, and then testing the left out datum
against the model predictions. The posterior predictive distri-
bution for the ith left out datum is p�di; tijdj≠i; tj≠i�. The LOO-
CV estimate for Ndata data points is given by

EQ-TARGET;temp:intralink-;df6;308;196LOO − CV �
XNdata

i

log p�di; tijdj≠i; tj≠i�: �6�

For each left out datum, we use MCMC sampling to
draw NMCMC samples from the marginal posterior
p�m; σd ; σ tjdj≠i; tj≠i�—using MCMC sampling we avoid explic-
itly integrating over the nuisance parameters Dj≠i. By writing
p�di; tijdj≠i; tj≠i� as a marginalization of the posterior predictive
p�di; tijm; σd ; σ t� with respect to the held out data, we can
estimate p�di; tijdj≠i; tj≠i� using the MCMC draws
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EQ-TARGET;temp:intralink-;df7;65;743

p�di; tijdj≠i; tj≠i�

�
Z

p�di; tijm; σd ; σ t�p�m; σd ; σ tjdj≠i; tj≠i�dmdσddσ t �7�

EQ-TARGET;temp:intralink-;df8;65;682 ≈
1

NMCMC

XNMCMC

n�1

p�di; tijmn; σd;n; σt;n�; �8�

in whichmn, σd;n, and σ t;n notate the nth MCMC sample of the
posterior for the model parameters. For each MCMC sample,
we can then calculate

EQ-TARGET;temp:intralink-;df9;65;601p�di;tijmn;σd;n;σ t;n��
Z
p�di;tijmn;σd;n;σt;n;Di�p�Di�dDi �9�

by explicit numerical integration. Higher values of the LOO-
CV score indicate better predictive performance. We, there-
fore, infer the presence of the core from Oldham’s data if a
model with a jump in the P travel time has a LOO-CV score
at least one standard error higher than all models without a
jump. We chose LOO-CV as its estimates of predictive perfor-
mance are robust and unbiased (Vehtari and Ojanen, 2012).
LOO-CV is quite computationally intensive, as it requires an
independent MCMC run for each datum, which could moti-
vate the use of less expensive methods such as k-fold cross val-
idation for large data sets. However, Oldham’s data consist of
only 90 points, so explicit LOO-CV is feasible—we further dis-
cuss these convergence performance considerations in the sup-
plemental material.

We use low-degree Chebyshev polynomials of the first kind
Ti to define the model travel-time curves, following Oldham’s
expectation that individual travel-time curves for a single phase
should be smooth. For models that contain a jump in the travel-
time curve, we use two polynomials to represent the curve before
and after the changepoint. We notate the models as �a;−� for
single travel-time curves of degree a with—signifying no second
travel-time curve for P arrivals, and �a; b� for double travel-time
curves of degrees a and b with a jump in travel time. For a single
travel-time curve of degree a,

EQ-TARGET;temp:intralink-;df10;65;248f �x;m� �
Xa
i�0

miTi�x�: �10�

For double travel-time curves, the model parameter vector m
contains two sets of polynomial coefficients and the location
of the changepoint Dj. The HMC method requires that the pos-
terior be continuously differentiable, so a model containing two
travel-time curves with a true discontinuity between them can-
not be used. To model the jump in travel time between curves,
we instead use a hyperbolic tangent to transition between two
polynomials f 1 and f 2 so that

EQ-TARGET;temp:intralink-;df11;65;80f �D;m� � f 1�D;m��1 − tanh�k�D − Dj�� � f 2�D;m��1� tanh�k�D − Dj��
2

; �11�

in which the factor of k � 1000 ensures that the jump is very
sharp, but still continuous.

We use products of univariate normal distributions for
p�djD; σd� and p�tjT; σt�, which is appropriate given we expect
the data to be independent, and the distribution of residuals is
approximately normal. For the prior p�m�, we also use a prod-
uct of normals with large standard deviation (σ � 10); the pur-
pose of this choice is to constrain m to reasonable parameter
ranges for Chebyshev polynomials on the interval (–1, 1),
which is important for the two travel-time-curve cases where
the second polynomial may rely on very little data. This choice
of prior contains all physically reasonable travel-time curves,
and so is only as informative as is required to make the
posterior sensible. For the dummy variablesD, we use an unin-
formative uniform prior on the whole real line as the distribu-
tion of measurment distances is a priori unknown. Based on
visual inspection of the data, we use a uniform prior on the
range �90°; 130°� for the changepoint Dj. Finally, setting the
priors for σd and σt requires special attention. Because the data
are highly scattered, the error parameters trade off very
strongly with one another, which can lead to parts of the
posterior distribution being so highly curved that MCMC
sampling is not feasible despite the rescaling mentioned earlier
and further discussed in the supplemental material. These sit-
uations have unreasonable choices of the parameter space, with
σd being almost zero whereas σ t is extremely large, or
vice versa. Solving this issue requires putting an informative
prior in the error parameters that stops either σ from being
very small or very large, which is justified as it is a priori
clear that the errors in both distance and time are significant
but finite. We use inverse-gamma priors tuned so that
P�σd ≤ 1:38°�� P�σd ≥ 13:8°�� 0:01 and P�σ t ≤ 0:202min� �
P�σt ≥ 2:02min� � 0:01, which are ranges we feel are reason-
able for the error standard deviations given Oldham’s descrip-
tion of the data.

Results
We used the STAN HMC sampler (Carpenter et al., 2017) to
calculate the LOO-CV score for seven models, detailed in
Table 1. About 5000 samples were generated for six chains,
with the first 2500 discarded, and the chains were compared
to ensure convergence. The best-performing model was (1, 1),
which fits a quadratic to the first part of the data and a line to
the data after the jump in travel times. The difference in
LOO-CV scores for all models relative to (1, 1) is given in
Table 2. Both models with two travel-time curves separated
by a jump are favored over all models without a jump by at
least five times the standard error, indicating that within the
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context of the models chosen, there is a very significant change
in the behavior of the travel-time curve despite the large scatter
in the data. As such, the P-phase arrival data alone are suffi-
cient to support Oldham’s arguments as to the existence of the
core in Oldham (1906). However, the data are not sufficient to
distinguish between a quadratic or a line for the first part of the
travel-time curve, as the difference between models (1, 1) and
(2, 1) is not significant. We show model (3, –), which is the
best-performing model with only one travel-time curve, in
Figure 2a and model (1, 1), the best-performing model with
two travel-time curves, in Figure 2b. The mean travel-time
curve shown for Figure 2b is smoother than any individual
sample of model (1, 1), which has a sharp jump between
the two travel-time branches. The mean model predictions
for both (3, –) and (1, 1) fall between the P=Pdif and PP phases
of the ak135 model for distances less than 120°, suggesting that
Oldham’s data are potentially a mix of these phases; for greater
distances, the better performing (1, 1) model sits between
ak135 PKiKP and PP at around 120° before moving toward

what are likely to be P core phases at higher distances. The
presence of some PP data may explain why the posterior mean
of model (1, 1) has negative slowness after the jump in travel
time, although the majority of post jump data is closer to the
modern core phase times.

From examining the spread of the 90% credible interval (i.e.,
the area between the 5% and 95% quantiles of the posterior
model distribution at each epicentral distance), we can see that
(3, –) is more tightly constrained than (1, 1), at the expense of
fitting the data significantly worse. For both models, the aver-
age correction increases as a function of distance, as is seen in
the length of the red connecting lines in Figure 2, indicating
that measurements were generally worse fit by a single travel-
time curve at longer epicentral distances. The LOO-CV score

TABLE 1
Catalog of Models Used to Test Oldham’s Data

Model
Two Travel-Time
Curves?

Total Free
Parameters

(1, –) No 94

(2, –) No 95

(3, –) No 96

(4, –) No 97

(5, –) No 98

(1, 1) Yes 97

(2, 1) Yes 98

TABLE 2
Difference in Leave-One-Out Cross-Validation
(LOO-CV) Score Relative to (1, 1), the Best-Performing
Tested Model

Model
LOO-CV
Score

Difference
in LOO-CV

Standard Error
in Difference

(1, –) 23.99 −3.91 0.44

(2, –) 24.03 −3.87 0.40

(3, –) 23.12 −3.78 0.38

(4, –) 23.14 −4.76 0.69

(5, –) 22.55 −5.35 0.95

(1, 1) 27.90 — —

(2, 1) 27.85 −0.06 0.14
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Figure 2. (a) Posterior distribution for model (3, –), the best-
performing single travel-time curve model. (b) Posterior distri-
bution for model (1, 1), the best-performing model. Note that the
mean shown for (b) is smoother than an individual sample of
model (1, 1).
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balances these concerns and strongly favors models with two
travel-time curves. The LOO-CV score degrades substantially
from model (3, –) to model (4, –) and model (5, –), which indi-
cates that further higher degrees would perform yet worse in
predicting held out data because the single travel-time curve
models are strictly nested (i.e., (5, –) contains all of (4, –),
which contains all of (3, –) as a special case). Overfitting be-
comes significant even for simple polynomials due to the high
scatter in the data.

Discussion and Conclusions
Model selection, provided by the LOO-CV score, strongly sup-
ports there being enough evidence solely in Oldham’s P-wave
data to support two apparently distinct travel-time curves,
which leads to Oldham’s argument for the core. Although the
scientific question presented in this study has not been in ques-
tion for more than 100 yr, the robust statistical tools required
to analyze the problem fully have only recently become avail-
able. Model selection, in particular, remains at the forefront of
statistical research and has great implications for both tradi-
tional inverse theory and newer techniques such as machine
learning (e.g., Rasmussen and Williams, 2006; Wit et al., 2012;
Claeskens, 2016). The problem of how to perform model selec-
tion is unfortunately less resolved than that of how to sample
from the Bayesian posterior, for which MCMC sampling, and
in particular HMC, has emerged as the clearly preferred tech-
nique (Neal, 2011; Betancourt, 2017; Fichtner et al., 2019).
Model selection, in contrast, has a plethora of related tech-
niques, ranging in complexity from penalized fits to the maxi-
mum a posteriori point such as the Akaike and Bayesian
information criteria (Claeskens, 2016), cross-validation meth-
ods such as that presented here (Vehtari and Ojanen, 2012),
and extending to full calculation of the Bayesian evidence. The
Bayesian evidence or Bayes factor calculation, in particular, has
received attention in geophysics and astronomy because it can
be cleanly derived from Bayes’ theorem as explicitly comparing
the probability of two models given the data. Unfortunately,
estimating the Bayesian evidence is highly nontrivial and is
typically only shown in the literature for low-dimensional
models due to convergence difficulties, which limits its utility
for realistic geophysical problems (Friel and Wyse, 2012;
Vehtari and Ojanen, 2012). The LOO-CV method used here
proved to be tractable for models with ∼100 parameters;
however, it does suffer from computational difficulties as the
number of data points becomes large. Vehtari et al. (2017) give
a method for using importance sampling on the posterior
MCMC samples using all data to approximate the results
from held out data, which is promising for large geophysical
datasets.

In this study, we have tested only simple functional forms
for travel-time curves with and without jumps, with the further
restriction that after the jump point all data are assigned to the
second travel-time curve. This restriction means that there are

no overlapping travel-time curves at any epicentral distance,
which restricts our analysis to data sets for which there are
not multiple groups of phases observed at a particular distance.
Visual inspection of Oldham’s data suggests that this simple
model is the highest level of complexity warranted by the
data. With modern seismic data, however, it is likely that
observations at a particular distance will contain multiple
phases that need to be classified into different classes. In this
case, more advanced modeling strategies that allow the expres-
sion of uncertainty as to what phase is being observed, such as
Gaussian Mixture Modeling, may be useful (e.g., Grana
et al., 2017).

Our study shows how to set up a model that marginalizes
over multiple potential sources of error and can be efficiently
sampled using HMC. We have shown how careful specifica-
tion of the prior is especially important in the historical con-
text, where the scale of the data errors are unknown and
multiple sources of error may trade off. Together, hierarchical
Bayesian modeling and model selection give us a powerful
toolbox to explore poor-quality historical data and derive
robust conclusions about geophysical processes. In the con-
text of Oldham’s travel-time data, it allows us to marginalize
out the large errors associated with both the distances and
travel times to conclude that there is sufficient evidence con-
tained in the P arrivals alone to indicate the existence of
the core.

Data and Resources
Historical data were taken from Oldham (1906), either from the
reported tables of averaged events or by digitizing the presented
travel-time curves. All calculations were performed using the
PyStan wrapper of the Stan statistical software package (Carpenter
et al., 2017). The supplemental material contains inversion results
for the five models not presented in the article (Figs. S1–S5).
Additional discussion regarding hierarchical Markov chain Monte
Carlo (MCMC) sampling and leave-one-out cross validation
(LOO-CV) versus k-fold CV are also present in the supplement.
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