
1.  Introduction
The Los Angeles (LA) Basin is a deep sedimentary structure whose evolution can be roughly characterized by an 
initial subsidence and extensional phase during the establishment of the North America - Pacific plate boundary 
associated with the opening of the Gulf of California and the rotation of the Transverse Ranges in the Miocene. 
This was followed by a period of transpression (Ingersoll & Rumelhart, 1999), and the generation of a substantial 
network of thrust faults within the basin (Wright, 1991). In its current state, the basin contains both active strike-
slip faults (e.g., the Newport-Inglewood fault, Whittier-Elsinore fault) and an imbricated stack of blind thrust 
faults (e.g., the Elysian Park faults, Puente Hills thrust), all of which accommodate the transpressional motion of 
the basin. These faults contribute to local seismic hazard both by providing source surfaces for earthquakes and 
by controlling local path effects by shaping the basin geometry (Plesch et al., 2007). The evolutionary history 
of the LA basin, with ample opportunity to produce and bury organic material during extension followed by the 
establishment of stratigraphic traps during compression, has allowed LA to be a leading producer of oil in the 
United States (US), helping to fuel a large rise in population during the mid-20th century. Development took place 
predominantly on the soft sediments of the main LA, San Fernando, San Gabriel and San Bernardino basins. 
As a consequence, LA is both one of the largest and most economically important cities in the US, while also 

Abstract  The proliferation of dense arrays promises to improve our ability to image geological structures 
at the scales necessary for accurate assessment of seismic hazard. However, combining the resulting local 
high-resolution tomography with existing regional models presents an ongoing challenge. We developed a 
framework based on the level-set method that infers where local data provide meaningful constraints beyond 
those found in regional models - for example the Community Velocity Models (CVMs) of southern California. 
This technique defines a volume within which updates are made to a reference CVM, with the boundary of the 
volume being part of the inversion rather than explicitly defined. By penalizing the complexity of the boundary, 
a minimal update that sufficiently explains the data is achieved. To test this framework, we use data from 
the Community Seismic Network, a dense permanent urban deployment. We inverted Love wave dispersion 
and amplification data, from the Mw 6.4 and 7.1 2019 Ridgecrest earthquakes. We invert for an update to 
CVM-S4.26 using the Tikhonov Ensemble Sampling scheme, a highly efficient derivative-free approximate 
Bayesian method. We find the data are best explained by a deepening of the Los Angeles Basin with its deepest 
part south of downtown Los Angeles, along with a steeper northeastern basin wall. This result offers new 
progress toward the parsimonious incorporation of detailed local basin models within regional reference models 
utilizing an objective framework and highlights the importance of accurate basin models when accounting for 
the amplification of surface waves in the high-rise building response band.

Plain Language Summary  Los Angeles is a major city of the United States that is at high risk of 
damage due to earthquakes, due to the large number of nearby active faults and its location on a deep bowl of 
weak rock, which tends to amplify earthquake damage. We use a large number of instruments located in Los 
Angeles district schools to make measurements of earthquakes that occurred near Ridgecrest, California in 
July 2019. These earthquakes generated a type of energy that is particularly useful for studying the structures 
responsible for amplification of earthquakes. Using this data, we applied a new imaging technique to create a 
local model of the northeast Los Angeles basin at higher resolution than had been previously available. Our 
imaging technique appropriately balances information from previous, lower resolution inversions with the new 
data obtained in this study.
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being one of the most exposed to significant earthquake hazard due to the complex fabric of active faults and 
ground-motion amplifying sedimentary structures associated with the geology that has allowed its preeminence.

Seismic hazard within the basin is controlled by the locations and potential for slip on the multiple local and 
regional faults of southern California, combined with the significant amplifying effect of the basin on ground 
motions. The importance of path effects, such as wavefield focusing, multipathing, and basin amplification, on 
LA basin ground motions has motivated extensive development of seismic velocity models. The ultimate goal of 
these models is to produce accurate synthetic waveforms at frequency ranges relevant to infrastructure and build-
ing codes within the basin. Early efforts focused on creating rule-based models of southern California (Magistrale 
et al., 1996, 2000) using empirically derived velocity laws (Faust, 1951) in combination with inferred geological 
structure obtained by correlating surface outcrops, borehole profiles and potential methods (Wright, 1991). Since 
these initial efforts, regional scale models of southern California have assimilated ever greater quantities of seis-
mic data, including seismic reflection profiles, receiver functions, and earthquake source locations and mecha-
nisms. This increase in the amount of data has led to better demarcated boundaries, including faults (Magistrale 
et al., 2000; Plesch et al., 2007), and allowed for more lateral variation of within basin velocity structures by using 
geostatistical methods to tie together disparate seismic data (Shaw et al., 2015; Süss & Shaw, 2003). Continued 
development of seismic velocity models of southern California has resulted in two widely used reference Com-
munity Velocity Models (CVMs), CVM-S4.26 (Lee et al., 2014, CVM-S hereafter) and CVM-H 15.1.0 (Shaw 
et al., 2015, CVM-H hereafter), that have incorporated waveform based seismic tomography to further refine the 
models. CVM-S and CVM-H broadly agree in the positions, average velocity profile, and geometry of the major 
basins of southern California, however in detail they are quite different, with CVM-H containing more explicit 
geological information. Figure 1 shows a characteristic cross-section of the LA basin for both models, running 
from Catalina Island, across the Inner Borderland to Palos Verdes, then through the main LA basin, San Gabriel 
basin and though the Transverse Ranges to the high desert. This profile makes evident the considerably higher 
detail present in the CVM-H model due to its construction including explicit geological features (notably includ-
ing an Inner Borderland basin not present in CVM-S, as seen to the left of profile A–B in Figure 1), as well as its 
significant artifacts associated with changing lateral resolution, as evident in profile marks R1 and R2. In con-
trast, CVM-S is significantly smoother than CVM-H due to its reliance on waveform-tomography during the final 
stages of construction, although several sharp resolution based artifacts are also evident, such as the jagged edges 
of the San Gabriel basin. Many features of the seismic wavefield within the LA basin, such as phase arrival times 
and P-to-S amplitude ratios, are captured for local events at frequencies of up to 0.2 Hz (Lai et al., 2020; Taborda 
et al., 2016). However, excitations of the basin from the recent large regional Ridgecrest earthquake sequence in 
July 2019 have illustrated that ground motion amplification predictions from finite-difference wave propagation 
through the SCEC CVM-H and CVM-S models do not accurately predict the observations in the 0.1–1 Hz range 
that is relevant for tall buildings within downtown LA (Filippitzis et al., 2021), warranting continued close study 
of the LA basin velocity model.

Seismic tomography offers the best opportunity for full spatial coverage of the basin at high resolution, especially 
when dense seismic arrays are utilized. In the southern and central parts of the basin, the deployment of high-den-
sity temporary seismic arrays using 10  Hz corner-frequency geophone nodes by the petroleum industry has 
enabled considerable exploration of the shallow structure of the basin using ambient-noise derived observables, 
such as Rayleigh-wave phase velocities, Rayleigh-wave amplifications, and body-wave travel times (e.g., Bowden 
et al., 2015; Castellanos et al., 2020; Jia & Clayton, 2021; Lin et al., 2013). However, similarly dense industry 
deployments have not to date taken place in the northern part of the basin, which encompasses the downtown LA 
region, with buildings that are highly susceptible to resonant coupling to the basin. The permanent broadband 
southern California Seismic Network (SCSN), while providing a long time series of excellent quality observa-
tions, has already been incorporated into the CVM reference models and does not provide the spatial resolution 
required for the next generation of basin models. A potential alternative data source is the Community Seismic 
Network (CSN, Clayton et al., 2012, 2020), a permanent network of three-component micro-electromechanical 
system (MEMS) accelerometers, designed to provide real-time strong-ground-motion telemetry in the event of 
local earthquakes within the LA basin. The CSN instruments have been designed for inexpensive construction, 
utilizing off-the-shelf components, and have a maximum observable acceleration of ±2g, in order to fulfill their 
primary goal of strong-ground-motion monitoring. As a result, the instrument noise floor is above the amplitude 
of ground motions produced by smaller regional earthquakes, and is also above the ambient seismic noise level. 
This unfortunately precludes the use of ambient-noise cross-correlation methods on CSN data as these methods 
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rely on coherent low-level energy propagation between sensors. However, both the Mw 6.4 and Mw 7.1 2019 
Ridgecrest, California earthquakes produced high quality records across the array, allowing for detailed analysis 
of ground amplification within the basin (Filippitzis et al., 2021; Kohler et al., 2020). The coherent surface-wave 
energy from these two events, recorded on the CSN, offers a unique opportunity to construct a high-resolution 
local tomographic model of the northeastern edge of the LA basin. In this study, we use the phase velocity and 
relative amplitudes of Love waves from both events, along with a 3D surface-wave tomography method based on 
the level-set method of Muir and Tsai (2020), to create such a model. The level-set framework extends traditional 
tomography by allowing for implicitly defined discontinuous interfaces within a velocity model. For instance, 
Muir and Tsai (2020) used the level-set method to image the damage zone of the San Andreas Fault at Carrizo 
Plains using a three-layer model, whereas Tso et al. (2021) presented several applications of the level-set meth-
od for developing interpretable block models of electrical resistivity. The ability to handle implicitly defined 

Figure 1.  (a) Shaded elevation model of southern California showing the outline of the major basins (defined by slope-
break analysis) in purple and the transect A-B used for profiles shown in orange. (b) Characteristic profiles through the Los 
Angeles basin for the CVM-S and CVM-H models. Abrupt lateral changes in resolution at positions R1 and R2 are seen in 
the CVM-H model.
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discontinuities significantly extends traditional tomographic methods, which 
usually require restrictive and unphysical regularization schemes to be well-
posed. We use the level-set method to define a basin volume within which 
we update a local model — this method allows us to only alter the reference 
CVM model where we have sufficient data constraints to warrant an update. 
We take a quasi-Bayesian approach to local updating in which the reference 
CVM becomes the a priori favored model within the local update. The Love 
wave data set then updates the CVM prior into an approximate posterior 
model which includes the influence of both the new data and the data that 
went into the CVM via its expression in the CVM model. At a global scale, a 
similar scheme of local quasi-Bayesian model refinement has been proposed 
by Fichtner et al. (2018), and within the SCEC CVM framework Ajala and 
Persaud (2021) have proposed a means of blending local updates into existing 
regional models — this work differentiates itself by its data-driven choice of 
model updating region, consistent with estimated data uncertainty. Integra-
tion of local models within the SCEC CVM framework will become an im-
portant part of hazard modeling within Southern California as high-density 
arrays allow access to the fine scale detail of path effects. The framework pre-
sented in this study represents a parsimonious way to achieve this integration.

2.  Data Collection
2.1.  Preprocessing

The data for this study were obtained from the HN accelerometer channels 
of the Los Angeles Unified School District (LAUSD) subarray of the Com-
munity Seismic Network (CSN, Clayton et  al.,  2012,  2020), consisting of 

200 s time series after the Mw 6.4 and Mw 7.1 Ridgecrest earthquakes' origin times and recorded at 50 samples/
sec. The network is deployed within school buildings in the City of Los Angeles, and at the time of the Ridge-
crest earthquakes consisted of 300 stations spaced ∼0.5 km apart. We used the components of the CSN located 
within the northeast LA basin, which is the densest part of the array. The study area, including the locations of 
the stations, is shown in Figure 2. Various display of the Ridgecrest earthquake data are shown in Filippitzis 
et al. (2021), along with a comparison of the data and predicted ground motions by several methods. For our 
study, data were first detrended, rotated into the ZRT frame, decimated to 5 Hz and then detrended once more. 
Pseudo-spectral accelerations (PSA) were then calculated for both the real data and synthetic 3D finite-difference 
simulations following the Graves and Pitarka method (Graves & Pitarka, 2010; Pitarka et al., 2019) for both the 
CVM-H and CVM-S models by convolving the records with a 5% damped harmonic oscillator, with the results 
for 4–9 s period shown in Figure 3. A record section of the high-frequency strong-ground-motion-accelerometer 
transverse (HNT) channel showing strong SH polarized phases corresponding to the fundamental Love mode is 
shown in Figure 4.

2.2.  Love Group Arrival Time and Amplitude Picks

To make group arrival picks, raw waveforms were first narrow-band filtered at period P using a zero-phase But-
terworth bandpass filter with corners at 𝐴𝐴 1∕𝑃𝑃 ± 1∕(

√

20𝑃𝑃 ) and then cosine tapered over the first 20 s of the time 
series to suppress edge effects. The maximum of the T component envelopes at a central period P = 12.5 s were 
set as the first preliminary group arrival pick. The 12.5 s filtered waveform envelopes were then again cosine-ta-
pered with a 6P taper window with 1P edges about this preliminary pick. We then fit a Gaussian function to the 
waveform envelope, with the center of the Gaussian being used as the finalized group arrival pick at 12.5 s and the 
amplitude of the Gaussian being recorded as the Love wave amplitude. Starting with the parameters of the 12.5 s 
Gaussian as initial values, we then proceeded to work down in 0.25 s increments on the narrowband filtered wave-
form envelopes, to a minimum period of 2 s. We tapered with the 6P width cosine around the Gaussian center of 
the previous period. We then fit a new Gaussian to the shorter-period waveform, initialized using the previous 
period's Gaussian fit. This method tracks the Love-wave group arrival from long periods, where it is clearly 

Figure 2.  Map of the study region, showing the locations of the CSN stations 
as open triangles, the boundary of the square inversion region in red, and the 
boundary of the analysis plots in blue.
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identifiable as the strongest feature, to shorter periods where other features 
are present. A characteristic example of the group picks is shown in Figure 5.

We took the logarithms of the fitted Gaussian amplitudes and normalized 
them relative to the mean log at each period to create the amplitude data 
set. The relatively narrow aperture of the CSN array compared to the dis-
tance to the source meant that the geometry was not favorable for tradition-
al tomographic methods. We therefore employed eikonal tomography (Lin 
et al., 2009, 2014) to calculate surface-wave dispersion curves, which has the 
additional advantage of naturally handling the curving wavefronts recorded 
on the CSN, caused by refraction across the basin boundary. Although re-
cent studies (Qiu et al., 2019) have attempted to utilize group arrival times 
for eikonal tomography of group velocity, there is significant noise associ-
ated with the group arrival peak. Furthermore, there are strict conditions on 
the approximations necessary for using eikonal tomography on group delay 
times that may not be met when the surface-wave arrival experiences refrac-
tion across a basin boundary (Qiu et al., 2019). As such, we did not attempt 
to utilize group velocity cg in this study, but rather used the group times as a 
guide for two-station cross-correlation phase delay times as discussed below.

2.3.  Eikonal Tomography From Two-Station Cross-Correlation Phase-
Delay Times

We employ eikonal tomography (Lin et  al.,  2009) to obtain phase veloci-
ty estimates within the densely spaced CSN array. Eikonal tomography ob-
tains phase velocity c directly from the gradient of the phase delay field: 
|∇τ| ≈ 1/c. Eikonal tomography has two principle requirements. First, there 
must be a clearly identifiable phase delay field τ (i.e., there is no signifi-
cant multipathing), a requirement which is met for Love waves in the period 
range of this study. Second, eikonal tomography is derived from an approx-
imation of the transport equation 1/c2 =  |∇τ|2 − ∇2A/Aω2, where ignoring 
the amplitude correction is typically taken to be valid for velocity models 
that are sufficiently laterally smooth that the Laplacian of the amplitude is 
small. Waves propagating from the Ridgecrest earthquake sequence strike 
the northeastern edge of the Los Angeles Basin nearly perpendicularly, so 
any effect of the basin edge on the Laplacian term is limited in extent within 
the LAUSD-CSN array. It is possible to utilize the full transport equation 
for determining phase velocity, which is called Helmholtz tomography and 
may provide improved accuracy if the Laplacian of the amplitude can be ac-
curately calculated (Lin & Ritzwoller, 2011). For this data set, comparisons 
between Helmholtz tomography and eikonal tomography show agreement 
across the basin transition where we would expect the amplitude correction 

to be strongest, which implies that eikonal tomography is sufficient to capture the correct phase velocity in the 
center of the array. Spurious values of the Helmholtz tomography solutions occur on the edges of the array due 
to the difficulty of obtaining accurate values of the Laplacian of the amplitude. Consequently, we limit our data 
analysis to the phase velocities derived from the eikonal equation as its assumptions appear to be satisfactorily 
realized and the Helmholtz tomography corrections are not sufficiently robust given our data.

In order to obtain the phase delay field τ at period P (relative to the northernmost station of the array), we first 
narrowband filter wavepackets at central period P. We then taper the waveform around the group arrival time 
using a cosine taper with a flat window of width 4P and edges of width P. We then calculate the cross-correlation 
time delay Δτij between each pair of stations i and j within a circle of radius rij < max(cgP, cminP) with a cutoff 
velocity cmin = 0.5km/s. The distance limit reduces the impact of potential cycle skipping on the phase delay 
observations, whereas the narrower taper width compared to the group picks also helps to stabilize the cross-cor-
relation calculations. This process is illustrated in Figures 6a and 6b. The relative delays Δτij form a graph with 

Figure 3.  Relative amplification of the maximum amplitude of 3 component 
pseudo-spectral accelerations (PSA) in the range of 4–9 s from the Mw 7.1 
5 July 2019 Ridgecrest earthquake as recorded on the Community Seismic 
Network (CSN), and as simulated using the Graves and Pitarka rupture 
generator (Pitarka et al., 2019) and a 3D finite-difference waveform solver for 
both the CVM-H and CVM-S models (Graves, 1996).
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stations acting as nodes and the delays acting as edge weights. Similarly, the distances between stations Δdij also 
form a graph. Appealing to Fermat's principle of least travel time, we extract the minimum spanning tree (MST) 
of the station distance graph, and then use the geometry of the MST to find an approximate minimum travel time 
surface. The MST is a unique sub-graph that connects all nodes (stations) with minimum edge weights (distanc-
es), with a schematic of this subgraph shown in Figure 6c. Summing phase delays Δτij along MST edges from 
the northernmost station gives a minimum relative travel time surface that is concordant with the observed phase 
delay data, as shown in Figure 6d. We also tested MSTs extracted from both the graph of normalized cross-cor-
relation values, as well as the graph of phase delays themselves, but found that the MST based on distance 
weighting gave the best performance in the final phase velocity maps. We then smooth the travel-time surface at 
each period by first fitting a high-tension cubic spline to the data, removing all outlying data points for which the 
fit residual at that point was greater than one standard deviation of all collected residuals, and then refitting the 
spline to the remaining data. This outlier removal cleans the phase delay data set of any remaining cycle-skipped 
measurements. This smoothed surface τ is then used to calculate phase velocity c at period p using the eikonal 
equation |∇τ| = 1/c.

2.4.  Estimating Measurement Uncertainty

The only available earthquakes that have produced sufficiently strong ground motions to record at least one 
octave of frequencies of Love waves are the Mw 6.4 and Mw 7.1 Ridgecrest events. Two events are insufficient 
to obtain useful statistical estimates of measurement uncertainty using only data recorded at individual stations. 
However, given that the surface-wave measurements have a finite area of sensitivity that overlaps substantially 
between neighboring stations, we can approximate the measurement uncertainty at a point by including all data 
within the sensitivity area. To calculate this, we bin data statistics over subarrays of radius λ/4 to obtain an esti-
mate of the measurement uncertainty, where λ is the fundamental Love wavelength at the period of measurement 
and the station of interest. At station i, we calculate the mean of the relative log amplitude 𝐴𝐴 𝐴𝐴𝐴

𝑖𝑖 = (𝑎𝑎𝑖𝑖
6.4

+ 𝑎𝑎
𝑖𝑖

7.1
)∕2 

and phase velocity 𝐴𝐴 𝐴𝐴𝐴
𝑖𝑖 = (𝑐𝑐𝑖𝑖

6.4
+ 𝑐𝑐

𝑖𝑖

7.1
)∕2 where a6.4 and c6.4 are the amplitude and phase velocities for the Mw 6.4 

Figure 4.  Record Section of the Mw 7.1 Ridgecrest earthquake as recorded on the HNT channel of the CSN-LAUSD array, 
zero-phase bandpass filtered between 4 and 10 s. Two main phases are clearly identifiable, with the first arriving phase 
exhibiting little delay due to the basin at longer offsets, which we infer to be the primary SH arrival. A second, stronger 
phase, which is delayed by the basin at longer offsets, we infer to be the fundamental Love mode.
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earthquake, respectively, and likewise a7.1 and c7.1 are the amplitude and phase velocity for the Mw 7.1 earth-
quake. We then estimate the 1σ uncertainty in the mean by averaging over the data variance at nearby stations:

��
� =

√

∑

�∈���≤�∕4

(

��6.4 − �̃�
)2 +

(

��7.1 − �̃�
)2∕

√

2� (1)

��
� =

√

∑

�∈���≤�∕4

(

��6.4 − �̃�
)2 +

(

��7.1 − �̃�
)2∕

√

2� (2)

where dij is the distance between stations i and j. The uncertainty correlation matrix Pij is modeled using a 
squared-exponential covariance function with characteristic length scale equal to one quarter of the average Love 
wavelength at predicted at stations i and j, which accounts for spatially correlated uncertainty, with the addition 
of a diagonal term to account for uncorrelated uncertainties

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖 + exp(−8𝑑𝑑2
𝑖𝑖𝑖𝑖
∕(𝜆𝜆𝑖𝑖 + 𝜆𝜆𝑗𝑗)

2),� (3)

where δij is the Kronecker delta. For each period the empirical uncertainty covariance matrices are therefore given 
by 𝐴𝐴 Γ𝑐𝑐 = 𝜎𝜎𝑐𝑐𝑃𝑃𝑃𝑃

𝑇𝑇

𝑐𝑐  and 𝐴𝐴 Γ𝑎𝑎 = 𝜎𝜎𝑎𝑎𝑃𝑃𝑃𝑃
𝑇𝑇

𝑎𝑎  where σc is the collected vector of individual station phase-velocity uncertainty 
measurements across all periods, and σa is likewise the vector of amplitude uncertainty measurements. Future 

Figure 5.  HN waveforms and corresponding continuous-wavelet transform spectrograms for the LAUSD CSN station LAS200 from the 5 July 2019 Ridgecrest Mw 
7.1 earthquake. The solid and dashed orange lines show the theoretical arrival times of the P and S waves through the laterally averaged CVM-H model from the 
hypocentral location to LAS200, and the solid and dashed red lines show the theoretical group arrivals for Love and Rayleigh waves, respectively. All theoretical travel 
times are offset from the event origin time by 10 s, which is the approximate peak of the USGS moment rate function. The yellow lines show the center and ±1σ width 
of the fitted Gaussian functions to the envelope of the tangential component. The center of these Gaussian functions act as group delay picks for defining the cross-
correlation window used for two-station phase delay measurements shown in Figure 6.
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work on uncertainty modeling could account for a variable scaling between 
the diagonal and non-diagonal terms in P, and model the correlations be-
tween measurements at neighboring periods; however for reasons of compu-
tational expediency we do not develop these analyses here.

3.  Inversion Methodology
3.1.  Model Parameterization

Having obtained measurements 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 and associated data uncertainty 
matrices Γc and Γa for phase velocity and log-relative amplification with-
in the CSN, we are now in a position to model them and invert for a local 
basin update. We seek to obtain a parsimonious local update that balances 
the constraints of new, densely recorded data, with the already well devel-
oped models presented in the SCEC CVMs. Ideally, we would perform a 
fully Bayesian inversion taking a CVM as a prior model; however as robust 
model uncertainties for the CVMs are not available, this approach would be 
highly dependent on subjective estimates for setting the prior, and would fur-
thermore be extremely computationally expensive for the nonlinear forward 
models required to predict our recorded data. Instead, we recognize that the 
sensitivity of our data is highly contained within the basin itself, given the 
characteristic phase velocities c and periods p of our study and the heuristic 
sensitivity depth of cp/4 for Love waves in a power-law basin-style velocity 
profile, given by Haney and Tsai (2020). Taking advantage of the Love wave 
sensitivity being largely restricted to the basin, we utilize the level-set-to-
mography framework of Muir and Tsai (2020) to explicitly define a volume 
within which we perform our model updates as part of the model parameter-
ization. The level-set method implicitly defines boundaries within a domain 
by taking them to be a contour interval of a function on that domain (Gibou 
et al., 2018; Osher & Sethian, 1988). For example, the basin boundary (a 2D 
surface) may be defined by the zero-contour of a continuous 3D function. 
The roughness and topology of the interface can be controlled by the prop-
erties of the underlying function. In our case, by appropriately regularizing 

the boundary of the inversion volume, we achieve the desired parsimony between the a priori CVM model and 
constraints from our newly observed data.

In this study, our model parameterization consists of two parts — a boundary to the inversion domain, and the 
velocity perturbations within that domain. Both components of the model are given by Gaussian Processes (GP; 
Rasmussen & Williams, 2006). GPs are a general method of introducing spatial relationships into spatial inter-
polation, projection and inverse problems (Valentine & Sambridge, 2020a, 2020b). In this study we use GPs to 
regularize our inversion, in an analogous way to the spatial damping and smoothing used in the frequently used 
Tikhonov regularization framework (Aster et al., 2018), although the smoothing induced by GPs is more flexible 
and easier to interpret. GP models are defined by the property that, for a collection of sample points x, the output 
f(x) of the GP is jointly distributed as a multivariate normal distribution. The wide range of choice in defining the 
covariance matrix of the multivariate normal makes the GP modeling framework very powerful. For instance, 
nearly diagonal matrices result in highly uncorrelated spatial behavior, where only the amplitudes of the output 
f(x) are affected. Matrices with large off-diagonal components can introduce interesting spatial covariances in 
f(x), such as restricting the output to be smooth up to certain derivatives, include spatial periodicity, prefer corre-
lation at certain length scales etc.

The pairwise covariance between f(x) and f(x′) is given by a covariance function C(x, x′). Given that the covari-
ance function controls the roughness, characteristic length scale(s) and potential periodicities of the GP, the selec-
tion of an appropriate covariance function is the most important part of GP modeling. We use a Whittle-Matérn 
covariance function in this study, which is a common choice for initial treatment of spatial modeling. The Whit-
tle-Matérn covariance allows explicit control over the degree of roughness, ranging from not-differentiable to 

Figure 6.  Outline of steps used to construct the phase delay field τ from 
narrowband filtered records. In the first two steps, the phase delays between all 
nearby stations are computed. In (a), we draw a circle of radius rij < max(cgP, 
0.5P) and compute the phase delay for maximum cross-correlation, Δτij, as 
shown in (b). Only nearby stations are used to suppress cycle skipping. In the 
second phase, we extract the minimum spanning tree (MST) from the graph 
of collected phase delay times, as shown in (c). The MST is a sub-graph that 
minimizes the total edge lengths (i.e., Δdij) such that the graph is still fully 
connected. Finally, in (d) we traverse the MST from the northernmost station, 
summing δτij along the edges to get the τ, a minimum-relative-phase-delay 
surface concordant with the recorded relative phase delays between individual 
station pairs.
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infinitely smooth depending on a parameter β. The spatial correlations of Whittle-Matérn GPs have a single 
dominant length scale l. The Whittle-Matérn covariance function is given by

𝐶𝐶(𝑥𝑥𝑥 𝑥𝑥′) = 𝜎𝜎
2 2

1−𝛽𝛽

Γ(𝛽𝛽)

(

‖𝑥𝑥 − 𝑥𝑥
′
‖2

𝑙𝑙

)𝛽𝛽

𝐾𝐾𝛽𝛽

(

‖𝑥𝑥 − 𝑥𝑥
′
‖2

𝑙𝑙

)

,� (4)

where Γ is here the gamma (or extended factorial) function and Kβ is the modified Bessel function of the second 
kind. A comprehensive treatment of classical GP models, including discussion of other common choices of 
covariance functions, may be found in Rasmussen and Williams (2006). The statistical properties of a GP are 
controlled by its hyperparameters, which for the Whittle-Matérn covariance function are l, the characteristic 
length scale, σ the characteristic scale of perturbations, and β the regularity parameter. Individual realizations of 
GPs using the Whittle-Matérn covariance are 𝐴𝐴 𝐴𝐴 −

1

2
 times continuously differentiable. In practice β is very hard to 

infer in most inverse problems as finite observations are unable to resolve rough details, and so it is set to 𝐴𝐴 𝐴𝐴 = 3
1

2
 

for the remainder of this study. This choice of β generates sufficiently smooth models to ensure that Love-wave 
eigenvalues are correctly calculated, and does not introduce any artificial roughness into samples from the pos-
terior distribution that is not warranted by the data. We do not set β to any higher value (which would result in 
greater smoothness) so that the basin boundary can be sufficiently steep to capture the abrupt change in Love 
wave amplification.

GP models with variable hyperparameters offer great flexibility, however they are expensive to compute in the 
spatial domain as they require repeated inversion of the spatial prior covariance matrix C, which is a function 
of the hyperparameters. The inversion of this dense matrix is in general an operation of complexity O(n3) for n 
model evaluation points. To accelerate the GP computations, rather than evaluating the GP at each station and 
forward model depth grid-point, we approximate the model by defining it on a regular grid with ncell grid nodes 
in each dimension. Using a structured grid allows us to specify the model by means of its hyperparameters and 
3D Fourier coefficients ξv and ξb for the velocity and inversion boundary components respectively, as is further 
discussed in the Appendix A (Chen et al., 2019; Lindgren et al., 2011). Efficient sampling of the GP can then be 
performed by an inverse real Fast Fourier Transform (complexity of order O(3m3  log(m)) where m = ncell/2 + 1 
≪ n), followed by interpolation by cubic splines to the station locations required for computing the forward 
model for phase velocity and amplitude underneath each station. We use the same length scale parameter l for 
both the velocity update and the inversion boundary; the inversion domain is 22 × 22 × 12 km in size, which 
must be rescaled to a unit cube for the inverse Fourier transform. The inversion area was determined by finding 
the smallest square that encompassed the stations, and is shown in Figure 2. We use 16 cells in each dimension, 
and a rescaled 𝐴𝐴 𝑙𝑙 parameter on the unit cube domain, which induces an effective length scale of 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 ∼ 22𝑙𝑙 in the 
horizontal direction and 𝐴𝐴 𝐴𝐴𝑧𝑧 ∼ 12𝑙𝑙 in the vertical direction – equivalent to assuming vertical heterogeneity has a 
characteristic length scale half that of lateral heterogeneity. We denote the evaluation (via inverse FFT) of the 
velocity GP model given velocity Fourier coefficients ξv, length scale 𝐴𝐴 𝑙𝑙 and velocity characteristic perturbation 
amplitude σv at a location (x, y, z) by 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝜉𝜉𝑣𝑣,𝑙𝑙𝑙𝑙𝑙𝑣𝑣

(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) , and the evaluation of the inversion boundary given 
boundary Fourier coefficients ξb, lengthscale 𝐴𝐴 𝑙𝑙 and boundary characteristic perturbation amplitude σb at a loca-
tion (x, y) by 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝜉𝜉𝑏𝑏,𝑙𝑙𝑙𝑙𝑙𝑏𝑏

(𝑥𝑥𝑥 𝑥𝑥) . For both GP models, a Whittle-Matérn covariance function is assumed. We use the 
CVM-S velocity and basin profile as the reference model which we will perturb during the inversion, to ensure 
initialization near a physical solution. CVM-S was chosen over CVM-H as the reference due to its smoothness, 
which lends itself to more concordant velocity models across the inversion boundary, and also because it better 
fits waveforms within the basin (Lai et al., 2019).

The Vs model is therefore given by

𝑉𝑉𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑉𝑉CVM-S(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) + 𝐺𝐺𝐺𝐺𝐺𝐺𝜉𝜉𝑣𝑣,𝑙𝑙𝑙𝑙𝑙𝑣𝑣
(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) 𝑧𝑧 𝑧 𝑧𝑧CVM-S(𝑥𝑥𝑥 𝑥𝑥) + 𝐺𝐺𝐺𝐺𝐺𝐺𝜉𝜉𝑏𝑏,𝑙𝑙𝑙𝑙𝑙𝑏𝑏

(𝑥𝑥𝑥 𝑥𝑥)

𝑉𝑉CVM-S(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) 𝑧𝑧 ≥ 𝑧𝑧CVM-S(𝑥𝑥𝑥 𝑥𝑥) + 𝐺𝐺𝐺𝐺𝐺𝐺𝜉𝜉𝑏𝑏,𝑙𝑙𝑙𝑙𝑙𝑏𝑏
(𝑥𝑥𝑥 𝑥𝑥),

� (5)

where VCVM-S and zCVM-S are the reference S velocity model and basin edge extracted from CVM-S. CVM-S does 
not explicitly define a basin edge, and so we discuss how we define the reference basin geometry in Section 3.2. 
A graphical schematic of the definition of the discretized model is shown in Figure 7. Density and Vp are then 
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calculated from the Vs model using the empirical relationships of Brocher (2005), which are suitable for basins 
within southern California.

3.2.  Extracting Reference Basin Depth Profiles From CVM-S

The SCEC CVM-S model is defined by a gridded voxel parametrization of VP, VS and ρ, that is, it does not contain 
explicit definitions of basin boundaries. To obtain reference boundaries for the CVM-S model, we utilized the 
following procedure. At each depth slice, we computed the mean and standard deviation of VS. We then flagged 
each voxel for which VS was slower than one standard deviation below the mean velocity of that depth slice as a 
potential basin candidate. For each 1D depth profile, we then worked from the second (z = 500 m) depth slice 
downwards, flagging a voxel to be within a basin only if all voxels above it were also flagged. Working from the 
second depth slice avoids the connection of individual basins due to the large low velocity surface feature in the 
CVM-S 4.26 model.

This process assumes that basins are strictly convex, which is not true in general but is a useful approximation 
to begin the inversion process. Using the scipy module ndimage (SciPy 1.0 Contributors et al., 2020), we then 
performed image segmentation using the label function. This function assigns each connected volume a unique 
integer index that can then be used to extract the basin from the larger regional velocity model. This process iden-
tified 61 individual basins in southern California, of which the most prominent correspond to the Ventura Basin, 
combined Los Angeles and San Gabriel basins, San Fernando Basin, and the Salton Trough. This workflow is 
presented in Figure 8. The boundaries of the Los Angeles/San Gabriel basin candidate were then utilized as the 
reference basin bottom surface for the inversion step.

3.3.  Forward Modeling

In order to predict the data from the final rasterized velocity model given by our model parametrization, we 
employ the lumped-mass finite element method for surface-wave eigenvalue calculation first proposed by Lys-
mer (1970), and implemented for Love waves by Haney and Tsai (2020). The rasterized model is interpolated onto 
a set of finite elements of exponentially increasing thicknesses h given by hn = a min(λ) * exp(N/(na))/n where 
N = 50 is the number of layers in the model, min(λ) is the minimum wavelength corresponding to the minimum 
phase velocity in a reference model, and a = 0.25 is the constant used to control the exponential scaling. This 

Figure 7.  Schematic of the model definition, showing the construction of the velocity model update and the boundary of the inversion, both constructed from a CVM-S 
reference perturbed by a Gaussian Process. The background model, schematically shown in gray, is given by the unaltered CVM-S model.

CVM-S Reference + GP Perturbation

Inversion Boundary

CVM-S Reference + GP Perturbation

Basin Velocity Model
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exponential scaling heuristically balances the need for finer resolution near 
the top of the model when calculating shorter period Love waves, against 
computational efficiency, in a way that is near optimal due to the approximate 
exponential shape of Love eigenfunctions (Haney & Tsai, 2015, 2017, 2020; 
Tsai & Atiganyanun, 2014). These layers are stacked on top of 4 layers of 
thickness h = 10 km simulating an infinite half-space to avoid contamination 
with the locked lower boundary condition. We then set up the finite element 
stiffness and mass matrices as given by Haney and Tsai (2020), and solve for 
the maximum slowness eigenfunction u that corresponds to the fundamental 
Love mode as well as the phase velocity c and group velocity cg. The relative 
amplification of Love waves directly observed between two locations can 
then be calculated by

𝑎𝑎1

𝑎𝑎2
=

(

𝑐𝑐𝑔𝑔1𝐼𝐼1

𝑐𝑐𝑔𝑔2𝐼𝐼2

)−1∕2

,� (6)

with 𝐴𝐴 𝐴𝐴 = ∫
∞

0
𝜌𝜌(𝑧𝑧)𝑢𝑢(𝑧𝑧)2𝑑𝑑𝑑𝑑 (Bowden et al., 2017; Bowden & Tsai, 2017). Trans-

mission coefficients obtained using a 1D mode-conversion theory (Brissaud 
et al., 2020; Datta, 2018), applied to Love waves transmitting from a char-
acteristic out-of-basin velocity and density profile to an in-basin profile, are 
plotted in Figure 9. The results of this mode-conversion test suggest that any 
potential modeling error from neglecting mode-coupling is small. As we use 
a derivative-free inversion method, these quantities are sufficient to solve for 
the optimal model.

3.4.  Inverse Solver

We use an extension of the Ensemble Kalman Sampler (EKS, Garbuno-In-
igo et al., 2020) to perform the inversion. This method uses an interacting 
ensemble of particles that follow Langevin diffusion dynamics to infer a 
Gaussian approximation to the posterior of the inverse problem. The EKS 
is derivative-free and embarrassingly parallel in the forward model, which 
enables rapid user iteration between different datasets and forward modeling 
methods, as well as easy deployment on heterogenous computing networks. 
The EKS as outlined in Garbuno-Inigo et al. (2020) assumes that all model 
parameters have a Gaussian prior. This restricts the model to have fixed hy-
perparameters (e.g., 𝐴𝐴 𝑙𝑙 , σv, σb, as required to set the statistical behavior of the 
model parameterization described in Section 3.1), which introduces a signifi-
cant potential for practitioner bias as we do not have a good basis for estimat-
ing these a priori. Consequently, we have further developed the EKS to han-
dle hierarchical models with variable hyperparameters. The original EKS and 
our extension to it are discussed in detail in Appendix A. The priors for the 
velocity hyperparameters are given by 𝐴𝐴 1∕𝑙𝑙 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 0.6) and σv ∼ Nor-
mal(0, 0.1) in scaled inverse km and km/s respectively. Experimentation has 
shown that the characteristic boundary perturbation amplitude σb is not suffi-
ciently identifiable from our data, so we set it to a reasonable value of 0.5 km 
that is small enough to avoid large, unrealistic changes in the basin geometry 
while allowing a sufficient fit to the data. Using these hyperparameter priors, 
we run hierarchical EKS sampling using an initial step length Δt0 = 50, and 
an ensemble size of 32. We double both the step length and the ensemble 
size every 50 iterations up to iteration 250, and further double the step length 
only at iteration 300, to finish with 400 iterations. The purpose behind this 
doubling scheme is to rapidly approach the maximum a posteriori (MAP) 
point using rough gradients from a small number of ensemble members, and 

Figure 8.  Outline of steps used to extract a reference basin surface from 
CVM-S. (a) For each vertical profile in CVM-S, we determine where (if 
anywhere) the VS profile first becomes faster than one standard deviation 
below the mean CVM-S velocity at that depth. All depths above this level 
are set to be a potential candidate basin at the location of the profile. In (b), 
we show the extracted candidate basin depths across southern California. 
In (c), we strip off the top 500 m (which is highly connected) and then use 
the SciPy ndimage label function to segment the remaining data volume by 
assigning each independent connected volume a unique index. The three major 
basin families of southern California are clearly seen in pink (Ventura/San 
Fernando), yellow (Los Angeles/San Gabriel/San Bernardino) and blue (Salton 
Trough).
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then perform more accurate sampling of the posterior using more ensemble 
members (Garbuno-Inigo et  al.,  2020). The step length doubling counter-
acts the tendency of the gradient amplitude to be small near the MAP point. 
Convergence diagnostics for the inversion run are shown in Figure 10. The 
final inversion reduced the weighted Gaussian misfit function from 8.79 (for 
the CVM-S model) to 5.33, a variance reduction of 22%, which is a notable 
improvement from the already highly optimized reference model.

4.  Results and Implications for the Los Angeles Basin
The results of the inversion are shown in Figures 11–13. In Figure 11 we plot 
the mean depth to the inferred basin bottom and the inferred change in the 
depth of the Los Angeles basin at each station. The change in basin depth is 
defined by the difference between the reference basin depth extracted from 
CVM-S in Section 3.2, and the depth to the same velocity contour in the final 
model. Figure 12 shows the details of the inversion along profile A–A’. Fig-
ure 13 shows the approximate posterior distribution of the hyperparameters 
in the inversion. In Figure  12, we also show the reference CVM-S model 
used to initalize the inversion, the mean of the EKS ensemble, the difference 
between these two, and the standard deviation of the ensemble. The stand-
ard deviation gives a sense of the relative uncertainty of the final inversion. 
As discussed in Garbuno-Inigo et al. (2020), in the low-particle limit EKS 
sampling cannot fully capture the range of uncertainty in the true inversion 
posterior, and so the plotted standard deviations are best assessed in a qual-
itative fashion. The EKS ensemble indicates that the highest uncertainties 

are along the boundary of the model. Within the inverted area of the final model, the uncertainties are highest in 
the deep central basin where the 4–10 s Love wave period range offers less sensitivity, and near the northeastern 

Figure 9.  Transmission coefficients for a Love wave entering the Los Angeles 
basin obtained using a 1D mode-coupling theory (Brissaud et al., 2020; 
Datta, 2018). This represents a worst-case mode-conversion scenario, with the 
true basin exhibiting a smoother horizontal gradient and hence less conversion. 
Even in this case, the conversion of energy from the fundamental mode to first 
overtone T01/T00 is relatively small, suggesting that our use of classical Love-
amplification theory is appropriate.
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Figure 10.  Convergence diagnostics of the Ensemble Kalman Sampler (EKS) showing the Mean Square Distance between 
ensemble members converging to a constant, which suggests the ensemble has reached an equilibrium and is approximating 
the posterior. The integration path length steadily increases, showing that the ensemble is not being forced to take very small 
steps (heuristics from Garbuno-Inigo et al. (2020) suggest a path length of 2 is sufficient to approximate the posterior).
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Figure 11.  (a) Mean depth of the inferred basin interface from the final ensemble. (b) The inferred change in the depth of the Los Angeles Basin relative to CVM-S, 
showing deepening of the basin especially south of the Upper Elysian Park fault (top thick dashed cyan line), and shallowing of the model in the hilly terrain to the 
North of the CSN. In both panels, major late Quaternary faults (<130 Kyr) are shown in red, other Quaternary faults are shown in thick dashed cyan. The transect A-A’ 
is shown in black.
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edge of the model where the phase velocities are high, resulting in small travel time gradients and hence higher 
uncertainties when employing eikonal tomography.

There are two principle features that are apparent from the results of the inversion. The first and most significant 
finding is that the data support a deeper Los Angeles basin along its northeastern edge, with an especially large 
jump in basin depth in the area immediately abutting the Upper Elysian Park fault as defined in the USGS Qua-
ternary fault map (USGS, 2020). The increase in basin depth reaches its maximum just south of downtown LA, as 
is seen in the southern part of Figure 11b which shows the change in basin depth. The Upper Elysian Park fault is 
shown by a thick dashed cyan line in the center-right of the panels of Figure 11, and demarcates a steep gradient 
in the edge of the basin that has been accentuated as a result of the inversion. In Figure 12, this large jump in 
the depth of the basin edge occurs in the center of the profile A-A’, with Figure 12c showing that the deep parts 
of the basin to the SSW of the fault are significantly slower in our final model, with the edge of the basin being 
significantly steeper in our model in a) than the reference model in b). This steepening is spatially coincident with 
the observations of high amplification further north in the data than in the reference models, seen in Figure 3, par-
ticularly in the 5–7 s band. Extracting the average basin edge gradient from 11.25 to 13.25 km along profile A–A’ 
in Figure 12 gives a dip angle of 72–73°. The SCEC CVMs have evolved from the original models of Magistrale 
et al. (1996, 2000). For the Los Angeles basin, an empirically determined velocity law for compacted sediments 
is used (Faust, 1951). The velocity profiles are controlled by the depth of contacts between two large scale units 
(the Repettian and Mohnian), the inferred basement depth, and the age of the surface, as digitized from Yerkes 
et al. (1965) and Wright (1991). The results of Wright (1991) rely on geological information from control wells. 
Wright's work in turn initialized the SCEC CVMs, either as a starting model for full-waveform inversion as used 
in CVM-S (Lee et al., 2014) or by acting as constraints in CVM-H (Shaw et al., 2015; Tape et al., 2009). There is 
a notable gap in the location of the control wells across the steep northeastern boundary of the basin that is now 
covered by the CSN, leading to uncertainty about the basin geometry in prior works. Given the position of the ba-
sin sidewall is situated between the imbricated blind-thrust faults of the Elysian Park system (Plesch et al., 2007), 
the high apparent dip angle imaged by surface-wave measurements gives further support to an over-thrusted 
basin in this region (as is included in the CVM-H model, albiet further to the northeast than is suggested by our 
results). Further cross-sections through the model are shown in Figure 14, and show that this steep basin sidewall 
continues along the northwest-southeast axis of the northern LA basin wall.

Figure 13.  Approximate posterior distribution from the final ensemble for the hyperparameters 𝐴𝐴 𝑙𝑙  and σv.
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Figure 14.  Profiles of the mean output Vs across the Los Angeles Basin, with inferred Quaternary faults in dashed cyan and the inferred edge of the inversion shown in 
dashed black.

Output Model Profiles
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The second notable finding is that the depth of the low velocity zone in the hilly terrain north of the Los Angeles 
basin is substantially shallower than in the reference model, which can be seen both along the northern edge of 
Figure 11 and in the faster velocities around end A’ of the transect in Figure 12c. This shallowing of the basin 
relative to the CVM-S model is to be expected given the high Love wave speeds recorded in the northeast of the 
array from eikonal tomography, and the relatively lower amplification when compared to the slow, deep sedi-
ments in the central basin. Indeed, the northeastern components of the CSN operate within the surface expression 
of the lower Puente and Topanga units of the LA basin stratigraphic column, which were assembled early within 
the LA basin sequence and support a shallow sequence of basin rocks toward to the right of profile A-A’ (Yerk-
es et al., 2005). In the Supporting Information S1, we further discuss these two main features in the context of 
fitting the rule-based CVM1 (Magistrale et al., 1996, 2000) to profile A–A’. By perturbing the locations of the 
loosely constrained geological contacts that define the CVM1, we analyze the outcomes of our fully 3D inversion 
in terms of geological structure, and find that the steep basin sidewall is consistent with recently (≤4 Ma) active 
deformation.

5.  Conclusion
We use Love waves generated by the Mw 6.4 and Mw 7.1 Ridgecrest, CA earthquakes to obtain Love-wave phase 
velocities and relative amplitudes between 4 and 10 s period using the Caltech-LAUSD Community Seismic 
Network, which offers unprecedented high-density coverage of the northeast LA basin. We use the level-set 
method of Muir and Tsai (2020) to develop a parsimonious velocity inversion that updates the SCEC CVM-S 
background model only where empirical estimates of data uncertainty indicate additional complexity is warrant-
ed. By employing fully 3D surface-wave inversion, we avoid internal artifacts in the model and make best use of 
a relatively small data set. In doing so, we find that the northeast wall of the LA basin is substantially steeper than 
that of the CVM-S model, allowing for high amplifications of surface waves in the 4–6 s period band traveling 
within the basin. The constraints provided by this model cover some of the parts of LA with the highest density 
of population, infrastructure and commercial development, and highlight the continued importance of seismic 
velocity model evolution in providing the most accurate possible estimates of potential strong ground motions in 
this important city.

Appendix A:  Hierarchical Ensemble Kalman Sampler
The Ensemble Kalman Inversion (EKI) scheme was introduced by Iglesias et al. (2013) by deriving a state-var-
iable augmented Ensemble Kalman Filter (Evensen, 1994, 2003) with dynamics that approximated the Leven-
berg-Marquardt method. EKI acts as an efficient black-box optimizer for large scale PDE constrained problems 
for which it is intractable or infeasible to obtain gradients, and has been used successfully in practical geophysical 
applications (e.g., Muir & Tsai, 2020; Tso et al., 2021). Subsequent to its initial formulation, much analysis on 
the EKI scheme has been performed by studying it as a continuous time gradient flow (Kovachki & Stuart, 2018), 
rather than in its original formulation as a discrete time dynamical system. This has lead to the development of the 
Ensemble Kalman Sampler (EKS, Garbuno-Inigo et al., 2020), an algorithm for approximate sampling of the pos-
terior distributions of large-scale Bayesian PDE constrained inverse problems. We utilize a hierarchical variant 
of the EKS scheme in this study to sample the posterior distribution of our local model update — we will briefly 
reintroduce the EKS scheme as described in Garbuno-Inigo et al. (2020) and then outline our variant hierarchical 
formulation. In general, the objective of these schemes is to approximate a posterior distribution whose negative 
log-posterior is of the form

Φ(𝑢𝑢𝑢 𝑢𝑢) = ‖𝑑𝑑 − 𝐺𝐺(𝑢𝑢)‖Γ +𝑅𝑅(𝑢𝑢),� (A1)

where Γ is the data noise covariance matrix, and where the regularization term R(u) introduces prior information. 
For instance, a typical choice would be a Tikhonov style regularization term 𝐴𝐴 𝐴𝐴(𝑢𝑢) = ‖𝑢𝑢‖𝐶𝐶0

 for some prior covar-
iance matrix C0. The norms here are defined by ‖u‖A = 〈u,u〉A = uTA−1u.

The EKS scheme is an ensemble-based approximation of a preconditioned overdamped Langevin equation, 
which is a stochastic differential equation (SDE) of the form

𝑢̇𝑢 = −𝐶𝐶(𝑢𝑢)∇𝑢𝑢Φ(𝑢𝑢) +
√

2𝐶𝐶(𝑢𝑢)𝑊̇𝑊� (A2)
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with C(u) a preconditioning operator that depends on u and 𝐴𝐴 𝑊̇𝑊  a Brownian motion term. It can be shown that 
the long-term behavior of this SDE gives rise to a trajectory that has a distribution given by p(u|d) ∝ exp(−Φ(u, 
d)) — that is the desired target posterior (Gelman et al., 1997). In the EKS scheme, an ensemble of particles 

𝐴𝐴 𝐴𝐴 =
{

𝑢𝑢
(𝑗𝑗)
}𝐽𝐽

𝑗𝑗=1
 are used to approximate the gradient of the likelihood, and C(u) is chosen to be the empirical 

covariance 𝐴𝐴 𝐴𝐴(𝑈𝑈 ) =
1

𝐽𝐽

∑𝐽𝐽

𝑗𝑗=1(𝑢𝑢
(𝑗𝑗) − 𝑢̄𝑢)(𝑢𝑢(𝑗𝑗) − 𝑢̄𝑢)

𝑇𝑇  , where overbars denote means across the particle ensemble. Pre-
conditioning by the empirical covariance acts to approximate the local curvature of the posterior by the ensemble, 
giving accelerated convergence compared to the unconditioned equation in a similar manner to the difference be-
tween Newton's method and gradient descent. The dynamics of this system of particles are given by the following 
SDE (without the gradient approximation and for Tikhonov style Gaussian priors)

�̇(�) = 1
�

�
∑

�=1

⟨(∇��(�(�))(�(�) − �̄), �(�(�) − �)⟩Γ�(�) − �(� )�−1
0 �(�) +

√

2�(� )�̇ (�).� (A3)

Making the ensemble approximation for the gradient of the forward operator G allows us to rewrite this in a form 
without an explicit derivative:

�̇(�) = 1
�

�
∑

�=1

⟨(�(�(�)) − �̄, �(�(�)) − �)⟩Γ�(�) − �(� )�−1
0 �(�) +

√

2�(� )�̇ (�),� (A4)

which is the equation solved by the EKS as described by Garbuno-Inigo et  al.  (2020). We will define 
�(� ) = 1

�

∑�
�=1⟨(�(�(�)) − �̄, �(�(�)) − �)⟩Γ for future convenience, so that the dynamics for the whole ensemble 

are given by

𝑈̇𝑈 = 𝑈𝑈𝑈𝑈(𝑈𝑈 )𝑇𝑇 − 𝐶𝐶(𝑈𝑈 )𝐶𝐶−1
0
𝑈𝑈 +

√

2𝐶𝐶(𝑈𝑈 )𝑊̇𝑊 𝑊� (A5)

We note that at the equilibrium of the ensemble where 𝐴𝐴 𝑈̇𝑈 ∼ 0 , these dynamics heuristically suggest a balance 
between a Newton style update of the ensemble (using an empirical covariance matrix to approximate the inverse 
Hessian), which will converge to the maximum a posteriori point, and the generation of correlated Gaussian 
noise scaled to the original ensemble. The average behavior of the ensemble at equilibrium therefore results in 
sampling a local Gaussian approximation of the posterior. A video illustrating the evolution of the ensemble for 
a toy problem is available in the Supporting Information S1.

In geophysical problems the scale of appropriate regularization (i.e., the choice of operator C0 for Tikhonov 
regularized problems) is often unknown. As such, much recent effort has been devoted to the development of 
hierarchical methods for solving inverse problems, in which the prior itself is to some degree unknown and is con-
trolled by some number of hyperparameters (see e.g., Malinverno & Briggs, 2004). Additionally, for large-scale 
problems with Gaussian priors, it may be beneficial for efficient sampling to perform a coordinate transformation 
into diagonalized coordinates that remove the correlations in the prior between hyperparameters and the main 
parameters used in the inverse problem, as will be described below. These parametrizations are known as whit-
ened, non-centered hierarchical parametrizations (Chada, 2018; Chada et al., 2018; Chen et al., 2019). The set 
of parameters is given by a collection of “regular” parameters ξ and hyperparameters θ. For zero-mean Gaussian 
priors, the coordinate transformation is given by u = L(θ)ξ for a Cholesky factor C0(θ) = L(θ)L(θ)T. With this 
transformation, the prior for the parameters ξ is simply a Gaussian with identity covariance matrix. The Chole-
sky decomposition is an expensive operation of order O(N(ξ)3) where N(ξ) is the number of main parameters. 
Lindgren et al. (2011) showed explicitly how to approximate the coordinate transformations used in this study by 
solving a stochastic partial differential equation (SPDE), which can be substantially more efficient. For certain 
choices of prior covariance, and by defining known boundary conditions on a rectangular volume encompassing 
the model parameters, there are known analytic solutions for the appropriate eigenfunctions ϕi(θ) and eigenval-
ues νi(θ) with which to solve the SPDE such that truncation of the series of eigenfunctions has the smallest total 
mean squared error; these eigenfunction-eigenvalue pairs form the Karhunen-Loève (KL) expansion (Dashti & 
Stuart, 2013). Using the KL expansion, 𝐴𝐴 𝐴𝐴(𝜃𝜃)𝜉𝜉 ∼

√

𝜈𝜈𝑖𝑖(𝜃𝜃)𝜙𝜙𝑖𝑖(𝜃𝜃)𝜉𝜉𝑖𝑖 . Using these known analytic eigenfunctions and 
appropriately truncating the KL expansion to a reasonable number of eigenfunctions can drastically increase the 
speed of performing the coordinate transformation; for the commonly used Whittle-Matérn family of covariance 
functions in a rectangular domain, the transform (assuming Neumann boundary conditions) can be calculated 
using the inverse discrete cosine transform for even greater efficiency (Chen et al., 2019).
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The hyperparameters θ may have arbitrary priors ρ, which are typically non-Gaussian but do not depend on ξ; 
consequently the dynamics of the system follow (for ensembles 𝐴𝐴 Ξ =

{

𝜉𝜉
(𝑗𝑗)
}𝐽𝐽

𝑗𝑗=1
 , 𝐴𝐴 Θ =

{

𝜃𝜃
(𝑗𝑗)
}𝐽𝐽

𝑗𝑗=1
 )

Ξ̇ = Ξ𝐷𝐷(𝐿𝐿(Θ)Ξ)𝑇𝑇 − 𝐶𝐶(Ξ)Ξ +
√

2𝐶𝐶(Ξ)𝑊̇𝑊� (A6)

Θ̇ = Θ𝐷𝐷(𝐿𝐿(Θ)Ξ)𝑇𝑇 + 𝐶𝐶(Θ)∇𝜃𝜃log(𝜌𝜌(Θ)) +
√

2𝐶𝐶(Θ)𝑊̇𝑊 𝑊� (A7)

These dynamics derive from the original EKS by considering an augmented state vector u = [ξ,θ]T and allowing 
arbitrary priors, noting that for a standard Normal prior   log(ρ(x)) = (−x2 − log(2π))/2, so 𝐴𝐴

log(𝜌𝜌(𝑥𝑥))

𝜕𝜕𝜕𝜕
= −𝑥𝑥 . We have 

furthermore neglected the cross-covariance terms Cov(Ξ, Θ) and assumed a block-diagonal form for the precon-
ditioning matrix, allowing us to decouple the dynamics as above. In order to solve these equations, we use the 
same split-step implicit scheme as Garbuno-Inigo et al. (2020), which is given by

Ξ∗
𝑘𝑘+1

= Ξ𝑘𝑘 − Δ𝑡𝑡𝑘𝑘Ξ𝑘𝑘𝐷𝐷(𝐿𝐿(Θ𝑘𝑘)Ξ𝑘𝑘)
𝑇𝑇 − Δ𝑡𝑡𝑘𝑘𝐶𝐶(Ξ𝑘𝑘)Ξ

∗
𝑘𝑘+1� (A8)

Θ∗
𝑘𝑘+1

= Θ𝑘𝑘 − Δ𝑡𝑡𝑘𝑘Θ𝑘𝑘𝐷𝐷(𝐿𝐿(Θ𝑘𝑘)Ξ𝑘𝑘)
𝑇𝑇 + Δ𝑡𝑡𝑘𝑘𝐶𝐶(Θ𝑘𝑘)∇𝜃𝜃log(𝜌𝜌(Θ

∗
𝑘𝑘+1

))� (A9)

Ξ𝑘𝑘+1 = Ξ∗
𝑘𝑘+1

+
√

2Δ𝑡𝑡𝑘𝑘𝐶𝐶(Ξ𝑘𝑘)𝑊𝑊 (Ξ)𝑘𝑘� (A10)

Θ𝑘𝑘+1 = Θ∗
𝑘𝑘+1

+
√

2Δ𝑡𝑡𝑘𝑘𝐶𝐶(Θ𝑘𝑘)𝑊𝑊 (Θ)𝑘𝑘,� (A11)

where W(Ξ)k and W(Θ)k are matrices of standard random normals of the same shape as Ξ and Θ respectively. 
The timestep Δtk is calculated adaptively following Kovachki and Stuart (2018). Given a reference timestep Δt0 
we have Δtk = Δt0/(‖D(L(Θk)Ξk)‖ + δ) where the norm on D is the Frobenius norm and δ is an arbitrary positive 
constant. Unlike in Garbuno-Inigo et al. (2020), the inclusion of arbitrary non-Gaussian priors for the hyperpa-
rameters θ means that the implicit update is no longer linear, but as the dimension of θ is usually small, the cost 
of performing this update using an iterative nonlinear solver is normally not overly burdensome. In practice we 
use forward-mode automatic differentiation for arbitrary priors ρ and the L-BFGS method (Liu & Nocedal, 1989) 
for solving the implicit update for Θ.

Data Availability Statement
The CSN data used in this paper are freely available from http://csn.caltech.edu/data. The TEKS inversion code 
may be found at https://doi.org/10.5281/zenodo.5834927 (Muir,  2022). Data analysis codes can be found at 
https://doi.org/10.5281/zenodo.5823526 (Muir et al., 2022).
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