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Time Scale for Rapid Draining
of a Surficial Lake Into the
Greenland Ice Sheet

A 2008 report by Das et al. documented the rapid drainage during summer 2006 of a
supraglacial lake, of approximately 44 x 10° m®, into the Greenland ice sheet over a
time scale moderately longer than I hr. The lake had been instrumented to record the
time-dependent fall of water level and the uplift of the ice nearby. Liquid water, denser
than ice, was presumed to have descended through the sheet along a crevasse system
and spread along the bed as a hydraulic facture. The event led two of the present
authors to initiate modeling studies on such natural hydraulic fractures. Building on
results of those studies, we attempt to better explain the time evolution of such a drain-
age event. We find that the estimated time has a strong dependence on how much a
pre-existing crack/crevasse system, acting as a feeder channel to the bed, has opened
by slow creep prior to the time at which a basal hydraulic fracture nucleates. We
quantify the process and identify appropriate parameter ranges, particularly of the av-
erage temperature of the ice beneath the lake (important for the slow creep opening of
the crevasse). We show that average ice temperatures 5—7 °C below melting allow
such rapid drainage on a time scale which agrees well with the 2006 observations.
[DOI: 10.1115/1.4030325]

1 Introduction

As annual late spring and summer temperatures affect the
Greenland ice sheet, there is extensive meltwater generation and
flow over its surface. Observations show that this water often
collects in surficial lakes. A particular lake, located near the
western margin of Greenland (68.72deg N, 49.50deg W), was
instrumented during 2006 by Das et al. [1]; see Figs. 1 and 2
based on their work. It provided a remarkably clear record of the
rapid disappearance of the lake’s water into the ice. Our previous
studies [2—4] supported quantitatively their [1] suggestion that
the liquid had proceeded downward along a major crevasse sys-
tem extending below the lake, through a process suggested by
Weertman [5], and then propagated as a turbulently driven hy-
draulic fracture along the ice/rock interface at the base (see
below).

The basic facts about the supraglacial meltwater lake are as
follows [1] (Figs. 1 and 2):

(1) The lake began filling in July 2006.

(2) The lake surface level reached a maximum at ~0:00 hr on
July 29, 2006.

(3) At that maximum level, the lake volume was ~44 x 10° m? s
and surface area was ~5.6 km?.

(4) Shortly after ~0:00, the level (marked by the “falling lake
level” curve in Fig. 2 and read on the right-side scale) was
observed to slowly/steadily fall at ~15 mm/hr.

(5) The rate of fall became much more rapid shortly after
16:00 hr.

(6) Then, within ~1.5hr, the lake water rapidly disappeared
into the ice, with the lake surface falling at a maximum rate
of ~12m/hr, with the maximum volumetric discharge rate
0> 10,000 m%/s, and average rate Q ~ 8700 m’/s during
the discharge. (In comparison, for the Niagara River lead-
ing to Niagara Falls, the average Q is ~5750 m*/s [6].)
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The lake level Hy 4. during drainage was determined from two
pressure meters (Hobo 1 and 2), see Fig. 1, although these were
left dry (Fig. 2, curve denoted Hy , ., With axis scale on right side)
well before full drainage. A global positioning system (GPS)
instrument was placed ~0.7 km from the lake edge, but yet further
from the ~2.7 km long crevasse system (Fig. 1) through which the
water is presumed to have drained. The uplift it recorded is la-
beled Z,, the black curve with axis scale on the left, and its time
rate is shown. We have marked the 1.15m maximum transient
uplift Z,.,, attained at ~17:40 hr, whereas the uplift rate dZ,.,/dt is
maximum at ~17:00 hr.

A simple calculation suggests that the water entering
beneath the ice sheet, transiently lifting it from its bed,
does so by a strongly turbulent flow. Let R be the radius
of the subglacial fracture, approximated for simplicity as
circular, near the condition of full lake discharfge. Then,
7R? x uplift of 1.15m ~ the lake volume of 44 x 10° m?, giv-
ing R ~ 3.5 km at full drainage. Since it takes about 1.2hr to
occur, the average fracture growth speed along the interface
can be approximated as R/1.2hr ~ 3 km/hr. Recalling that the
kinematic viscosity of water is ~ 107°m?/s, the Reynolds
number for flow in the fracture is

Re=(3km/hr x 1.15m)/(10 "% m?/s) ~ 8 x 10° 1)

and numbers in excess of 10° would still be appropriate if we
reduced the assumed gap size significantly, as may be appropriate
for the earlier phases of the fracture propagation.

However, although our initial attempt [2] to explain the
remarkably short time scale for the lake disappearance yielded
order-of-magnitude agreement, it did not agree precisely with
observations. Ice, like all solids, responds elastically on short
time scales, although creep deformation becomes dominant on
longer time scales [7]. The assumption of elastic response
seems appropriate over the short time scale of the lake drain-
age, of order 1.5 hr in Fig. 1. Nevertheless, we argue here that a
critical aspect of the drainage process was developing by creep
flow, well before the onset of rapid drainage. The creep, a pro-
cess to which Needleman and coworkers [8,9] have contributed
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insightful computational methodology in other contexts, plays
an important role in determining the estimated time scale of the
lake drainage.

2 Analysis

To model the drainage event, or at least a simple but tractable
representation of it, we adopt the solution of Ref. [3] for an ice
sheet of uniform thickness H (=1 km), see Fig. 3, in which a ver-
tical crevasse connected to the lake supplies water to a growing
opening gap (basal fracture) along the bed, with fluid inlet pres-
sure pinter(#) at the entry point. The equation system solved in Ref.
[3] generalized that in Ref. [2] to allow the crack half-length L(¢)
to be comparable to and several times larger than ice thickness H
(whereas Ref. [2] presented a self-similar solution for the range
L(r)/H < 1, ie., effectively for a fracture at the base of an
unbounded domain).

The modeling of Ref. [3] assumes, as justified in retrospect,
that for purposes of calculating the elastic deformation and
hence the crack opening displacement, that only the local fluid
pressure p(x, 1) [= —a..(x,z = 0,7)] need be considered. That is,
because it is normally far greater than the shear tractions
Twan (¥, 1) [= —0.:(x,z = 0,¢)] exerted along the walls of the frac-
ture from resistance to fluid infiltration. To solve for the crack
opening in a manner which solves the elasticity equations in 2D
plane strain and meets the traction-free surface boundary condi-
tions at z=H, the numerical integral equation formulation of
Erdogan et al. [10] (with correction of a misprinted kernel as
noted in Ref. [11]) was used, which relates the pressure distribu-
tion p(x, t) to the crack opening gap h(x, ) at each time ¢ (with
inertia neglected because of the slowness of fracture propagation
speeds relative to elastic wave speeds). Also, in view of the low
fracture toughness of ice, K. =~ 0.1 MPa, it was judged that
toughness became unimportant, in the sense quantified by Gara-
gash and Detournay [12], once crack half-length L(7) was greater
than ~ 10m. Effectively, over the long length scale of fracture
growth (L > 1km), the problem of fracture becomes asymptoti-
cally indistinguishable from the problem of lift-off along a non-
adhering (zero Ki.) interface.

Elasticity theory under plane strain conditions in the x—z plane,
and within the usual approximations of linear elastic theory,
relates displacement discontinuities Au,(x,¢) and Au,(x, ) (along
the fracture plane z=0, between x = —L(r) and x = +L(r)), to
the traction stress components acting on the plane and in adjacent
material by
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Fig. 1 Sketch illustrating early October 2006 synthetic aper-
ture radar image overlaid with the NASA moderate resolution
imaging spectroradiometer (MODIS) image, showing the lake
extent (blue) on July 29, 2006. This figure was redrawn here to
approximately duplicate the features in Das et al. [1]. A GPS sta-
tion measuring the ice displacement was located ~ 1/4 km
from the lake shore. Hobo instruments located on the lakebed
measured fluid pressure, from which lake depth versus time
was inferred.
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Fig. 2 Data from the 2006 lake drainage event, reproduced
from Das et al. [1] with additional labeling by the authors:
Falling lake level versus time, inferred from water-pressure
loggers Hobo1 and Hobo2 (Fig. 1) is shown by the square
symbols and by the curve starting along the upper left vertical
axis and initially passing through those symbols, with values of
the change in lake level being marked along the right vertical
axis. The dashed continuation of that curve is a linear fit to the
last two lake-level measurements before both loggers were left
dry, and it suggests that the lake drained completely prior to
~17:40 hours. Uplift Z, at the GPS site (Fig. 1), acquired with
5-min temporal resolution, is shown by the curve starting low
along the left vertical axis, and the uplift rate Z/dt, peaking
around 17:00 hours, is also shown; values for both are given
along the left vertical axis.
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The notation here is that with u, = u,(x,z,¢), for « =x or z,
Auy(x,1) = uy(x,z = 0",1) — u,(x,z=07,¢). The kernels K.,
K,., K.,, and K_, all vanish on the plane z=H, the surface of the
ice sheet, so as to meet the traction-free boundary condition. Also,
on the plane z =0, the diagonal kernels K, and K, include terms
which are Cauchy singular, like 1/(x —x’). Here, E' = E/
(1 — v?), where E is Young’s modulus and v is the Poisson ratio.
The full form of the kernels as z — 07, the upper side of the frac-
ture plane (i.e., the base of the ice sheet), is given by Erdogan
et al. [10], although a misprint as identified in Ref. [11] must be
corrected.

1% p =0 (atmosphere)
Lake U (3,1,
Vertical crack-crevasse — _J|, i k
system, feeder channel ——s| i (1)

H~1km P = Pinte (1) Oyert Q) N
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— x
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Fig. 3 Schematic of subglacial drainage system showing the
vertical influx Qert(t) from the lake through the crack—crevasse
system feeder channel, and the resulting water injection along
the ice-bed interface. The feeder channel horizontal opening
AU includes contributions from elastic opening, Au®, linearly
proportional to the current fluid pressure, and prior creep open-
ing, Au®", which accumulated over an extended time before the
rapid drainage. The ice sheet height H is much larger than the
lake depth and the basal fracture opening h(x, ). Additionally,
the lake diameter is also significantly smaller than the ultimate
horizontal spread of 2L(t) of the basal hydraulic fracture.
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Asz — 0", 0,,(x,z,t) — —p, where p is the local fluid pressure
in the fracture, whereas o0..(x,0,#) — —Tyay, the shear stress
resisting the turbulent fluid flow in the fracture. Typically, in such
hydraulic fracture situations, Ty,; < p and we follow Ref. [3] in
neglecting 7., in comparison to p. Thus, recognizing Au,(x, ) as
h(x, t), the opening gap along the fracture, the hydraulic fracture
problem is formulated, like in Ref. [3], as

S

Jﬂ(’) (Kxx(X*X’,OJr) sz(x—x’,0+)> 9 {A”“'(xl’t)}dx’

1 \Kp(x —2,07) K..(x —x/,07) ' | h(x,)

ox
3)

which ultimately relates the pressure distribution p(x, #) within the
fracture to its opening gap h(x, t) along it.

Consistent with the high Reynolds number estimated in Eq. (1),
the flow in the fracture is expected to be a turbulent flow in a
rough-walled gap. The relevant considerations are, first, that the
Darcy—Weisbach friction factor f, for such flows at mean velocity
U in rough-walled pipes or channels, is defined by writing the
wall shear stress resisting the flow as Ty /(pU?/2) =f/4 (p is
the density of the fluid, water in our case). The f may be estimated
for the present case of flow in a thin slit by using well-calibrated
data for flow in rough-walled cylindrical pipes, reinterpreted for a
slit using the hydrauhc radius concept. Following Ref. [2] that
gives f ~ 0.143(k/h)'*, where k is the amplitude of the wall
roughness as an equivalent Nikuradse grain size. An insightful
recent discussion on such turbulent flow in rough-walled tubes is
given by Gioia and Chakraborty [13]; see also Ref. [14].

Observing that the gap /& times the pressure gradient —dp/0x is
equilibrated by 21y, we have
0
—n 2 = 0.0357pU% (k /1) @

ox

(here, p is the mass density of the water; we use p;.. below for the
lesser mass density of the ice).

To the preceding Egs. (3) and (4), we add the conservation of
mass

o(hU)  oh
o + i 0 (®)]

to close the system, as the set of equations in fluid pressure p, frac-
ture opening gap /, and fluid velocity U that was formulated and
solved numerically in Ref. [3] (and earlier for the L < H range in
Ref. [2]).

3 Application to Basal Fracture Propagation

Here, we present the solutions to the above system of equations,
as devised in Ref. [3], and use them subsequently to address the
time scale of glacial underflooding in the lake drainage event
considered.

The rate of fracture propagation along the bed is

dL _ ~_ (Pinlet — 0o %Pinlet—(fg i/L d L
i Uip = ( P ) ( £ > (k) ¢(H> (6)

Here, the notation is a reminder that the fracture growth rate is
assumed equal to the fluid velocity at the tip, and the function
¢(L/H), as fitted to the numerical results of Ref. [3], is

G(L/H) ~ 5.13[1 + 0.125(L/H) + 0.183(L/H)*] 7

The polynomial in L/H in the brackets closely fits results of Ref.
[3] out to L/H = 5, that is, to L ~ 5 km. Here, a, is given by
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Oo = picegH (8)

the overburden pressure of the ice (which pj,; must evidently
exceed in order for water to be driven beneath the ice sheet to
open the fracture). Note that in the absence of vertical flow,
Pintet = pgH, and since the liquid water density p ~ 1.1p;.,
Dinlet > 0, under those hydrostatic conditions, which is what
drives the water to the bed.

Further, for a given inlet pressure pi,je, the average h,y, of the
opening gap h(x, r) along —L() < x < +L(¢), i.e., along the frac-
ture, is expressible in terms of pj, and L, as

Pinlet — 0o
hay = 112202 L[1 + 0.517(L/H)’) ©

Here, the expression in the brackets closely fits numerical results
of Ref. [3] up to L/H = 3.5, but falls about 15% too low at
L/H =5.

To estimate the volumetric inflow rate Qpasa (units [L2]/[T]) to
the bed, we choose some representative width W perpendicular to
the diagram of Fig. 3 (i.e., in the unmarked y direction) over
which the inflow rate (units [L2]/[T]) per unit distance perpendicu-
lar to the plane of the diagram, calculated from the 2D plane strain
solution of Ref. [3], may be assumed to apply approximately. We
take W = 3km for the width, noting that the major crevasse
marked in Fig. 1 extends over a length of 2.7km along the lake
bed, and anticipating that the flow extended the lift of the ice off
from its bed somewhat beyond the end of that feature.
(Ultimately, a 3D analysis is needed, but that is well beyond the
scope of this paper.) Thus, noting that 2LWh,,, is the volume of
water in the subglacial fracture

dL
dt
(10)

d(ZLWhavg) _ (Pintet — @
7 =6.88 7

Obpasal = O)WL 1+1034L—2
basal — . H2

where dL/dt is given by Eq. (6), with Eq (7), above. We note that
for a given L/H, dL/dt < (pinter — )7 and thus,

)13/6 (11)

Qbasal 08 (Pinlet — 0o

4 Coupling to Lake Water Supply to the Bed by a
Vertical Crack—Crevasses System

By mass conservation, the volumetric flow rate Qg into the
basal fracture must equal Q.. (see Fig. 3), the volumetric flow
rate at which lake water flows down the vertical crack—crevasse
system (which forms a feeder channel to the basal fracture).
We assume that this vertical system has a width in the y direction
(perpendicular to the plane of the diagram in Fig. 3), which is the
same width W as adopted above for the basal fracture. Also, for
simplicity in making elementary estimates of the lake drainage
time scale, we model this vertical feeder channel as having a spa-
tially uniform opening gap Ai = Aii(t), thought of as the area-
averaged opening of a vertical crack of depth H ~1km in the z
direction and width W ~ 3 km in the y direction, with faces loaded
by the area-average pressures.

We determine the vertical flux using an elementary balance of
forces on a vertical slab of water from the lake, of area HW and
thickness Au, moving downward with velocity Uy
(= Overr/WAm). The flow is driven downward by the slab weight
pgHW Au, which is balanced by the sum of the upward force
Pinlet WA at the base of the slab and the shear forces from the wall
shear stresses on the two vertical boundaries summing to

2tyaiHW, where Ty = p(f/8)UZ,, and f = 0.143(1{/Aﬁ)1/3.
Balancing these forces leads to

vert

pgHWAu = (f/4)p vaW + Pinle WAL (12)
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Fig. 4 Dependence of flow rate on inlet pressure for several
values of the creep parameter C. In the model, the flow begins
at pinet = pgH (hydrostatic pressure), but then the pressure
drops as flow rate develops, until the pressure p;, e falls to the
ice overburden pressure p;..gH.

which can be rearranged to give the formula for the vertical flux

(13)

1/2 Aif\ /6
32 1/2( AU
H) WAw'“g ( . )

In a somewhat similar attempt to link flow down the vertical
crevasse to flow into the basal fracture, Tsai and Rice [2]
assumed, in view of the relatively short time scale (<1.5hr) of
rapid drainage, purely elastic response of the vertical crevasse
with its opening being proportional to the difference between the
average pressure pinet/2 in the crevasse and the corresponding av-
erage o, /2 for the far-field horizontal stress in the ice, which led
to the unphysical result of eventual complete crevasse closure
when assuming purely elastic response of the ice (which is dis-
cussed below).

To more accurately model the drainage, particularly regarding
the previous assumption of purely elastic ice deformation, we
allow here for the possibility of significant creep opening of the
crevasse. To motivate this, recall the slow falling of the lake level
was observed for ~16 hr before the rapid break-out. We interpret
the fact here as evidence that the crevasse system may have been
highly pressurized before nucleation of the propagating basal frac-
ture at the bed. Thus, we quantify this creep opening of the cre-
vasse before nucleation of the basal fracture. (That nucleation
process would, of course, be sensitive to the value of Kj., or some
generalization of it for the ice—rock interface, but we are not able
to address it here.) Specifically, we write the crevasse opening Ai
as having an elastic part plus a creep part

Overt & 5.29 (1 o Pinlet
P8

Aii = Ai® + A (14)
The creep part Au" will depend on how long the crevasse faces
have been pressurized prior to basal fracture nucleation and is
assumed to not change significantly during the short time scale of
the lake drainage.
The elastic average opening can be derived from a 2D plane
strain elastic solution for a crack of length W, opened by uniform

pressure taken as pipie/2, in a medium under far-field compressive
stress g,/2

Aﬁel _ 7T(pinlet - 60) w
4E'

15)

We define C as the ratio of the prior creep opening Au‘" over
the 16 hr of slow drainage to the elastic opening Ai®'. In that com-
parison, both are evaluated for hydrostatic pressure piner = pgH
(see Eq. (17) to follow). Inserting this formula for the average
conduit opening into our formula for the vertical flux given in Eq.
(13), we can write Qy.y as a function of pj,e alone. This is shown
in Fig. 4 for the parameters given in Table 1. We see that the verti-
cal flux increases with C and has a nonmonotonic dependence on
the inlet pressure. Furthermore, Q.. vanishes when the inlet pres-
sure is equal to pgH. This figure nicely highlights the competing
physical processes that control the flux through the vertical con-
duit. On the one hand, raising the inlet pressure increases elastic
opening of the conduit promoting additional flow. However, rais-
ing the inlet pressure also lowers the pressure gradient driving
flow, thus suppressing flow. Balancing these two considerations
leads to peak fluxes that occur for an intermediate inlet pressure
lying between o, (= p;..gH) and pgH. Note that for C =0—cor-
responding to a conduit that undergoes only elastic opening—we
also see low fluxes for inlet pressures near o, = p;..gH because
the conduit closure chokes the flow.

To estimate the prior creep opening, we represent the creep de-
formation of the ice sheet by the Glen law form typically adopted
in glaciology [7]. This is dy/dt = 2A.(T)1", with n=3, where t©
is the Mises equivalent shear stress, based on the second invariant
of the deviatoric stress tensor s,.3, and dy/dt is the equivalent engi-
neering shear strain rate, with the trace of the creep strain rate
vanishing (no volumetric creep strain) and with components of
deviatoric strain rate being in proportion to one another just as are
components of 5,3 Recommended values of A.(T) are given by
Cuffey and Paterson [7], and within the simplicity of our model-
ing, we evaluate A(T) based on a single value of T, hoped to be
representative of ice temperatures in the vicinity of the lake and
crevasse system. We note that A (7) remains finite for the solid
phase of ice at its melting temperature.

Although there is no general analytical solution for crack open-
ing in a material undergoing power law creep (except in the linear
viscous case), we use the following approach. Based on solutions
for pressurized circular holes, elliptical holes, and flat cracks in
the n=1 linear viscous case (analogous to familiar linear elastic
solutions, but evaluated with v = 1/2), and the Nye [15] solution
for a pressurized circular hole in a power law creeping material,
Fernandes and Rice (in progress) have conjectured that the aver-
age creep opening rate of a pressurized crack of length W in plane
strain, opened by uniform pressure taken as pinet/2, in a power
law creeping solid under far-field compressive stress g,/2, could
be represented as

dAi* T Pinlet — 00"
g = e 5T () W

16)

where x(n) is a correction factor depending on n, which is
expected to be close to 1.0 (and is 1.0 in the n =1 case).

In numerical simulations, we compared results from the above
approximation to a plane strain finite element model of a pressur-
ized crack using aBAQus, which was formulated as a Maxwell
model (elastic and viscous elements in series, where the viscous

Table 1 A table summarizing the parameter values used in this manuscript. All parameters choices follow those made in Ref. [2]
except for the creep parameters which follow Ref. [7].

Parameter H w p Dice g k Er n t A7 °C) A(—5°C)
Value 1 3 1000 910 9.81 0.01 6.8 3 16 6.32x 107% 9.31x107%
Unit km km kg/m3 kg/m3 m/s2 m GPa — hr Pa 35! Pa 5!

071001-4 / Vol. 82, JULY 2015

Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.or g/ on 06/04/2015 Terms of Use: http://asme.org/terms



elements satisfy power law creep), so that when solved within
small geometry change assumptions, the displacement rates con-
verge in time to those of a purely viscous material. This approach
allows the model to respond to suddenly applied and sustained
boundary loading but on a time scale before the crack has opened
enough to respond differently from a straight cut. In order to iso-
late the creep strain rate using the ABaQus elastic plus creep defor-
mation formulation, we waited long enough for essentially steady
state creep strain rate to be achieved and elastic relaxation to be
completed. See Refs. [8] and [9] for other computational
approaches to creep flow. The simulation was benchmarked using
two simple tests: (1) comparing the opening rate of the crack
under linear viscous deformation (n=1) to the known analytical
solution. Results yield an average nominal nodal error of 0.03%
with a maximum nodal error of 0.1% nearest the crack tip. (2)
Using a model, assuming a nonlinear rheology (n=3) generates
results which were found to compare favorably to the HRR field
described by Hutchinson [16] and Rice and Rosengren [17]. By
comparing the approximation in Eq. (16) to the numerical solution
attained from the aBaQus model, the correction factor x(n) was
found, for the n = 3 case of interest in this study, to be x(3) ~ 0.8.

We estimate Au" at the time of basal fracture nucleation, after
approximately 16 hr of slow leakage from the lake, by assuming
hydrostatic pressurization of the vertical crevasse system
(Pinter = pgH) for the 16 hr period, hence multiplying dAu“"/dt
above by 16hr. As noted, a scale for the resulting A" is to com-
pare it to the Aii®' corresponding to hydrostatic pressurization of
the vertical crevasse, giving C as

_ —cr|t=16hr —el
C= (Au |Pin1ct:IJgH>/(Au |17m|el:ng)

Note that C scales linearly with time ¢ of hydrostatic pressure,
with A, (T), and with H? (when n=3). Also, A (T) has a weak
dependence on ice pressure P [7] which we choose as P = g,/2.
Assuming H=1km, E' =~ 6.8 GPa, n=3, and x(3) = 0.8, we
consider (being mindful that, as we show in Sec. 5, the best-fitting
C to match the discharge data is in the range of C = 1.5-2.0)
average ice temperatures in the range of —7.0°C to —5.0°C. The
corresponding Ao are A (—7°C) =6.32 x 107%s~'Pa~? and
A (—5°C) = 9.31 x 10725~ 'Pa~>. With those parameters, and
with H=1km, and standard values of p and pj., we obtain
C=142 at —7.0°C and C=2.11 at —5.0°C, which closely
bracket the preferred range of C. Similarly, we obtain tempera-
tures corresponding to relevant C values of C=1.50 at
T =-6.75°Cand C=2.00 at T = —5.27°C (see Table 1).

In the calculations of Sec. 5, we recognize that the creep open-
ing does not change appreciably during the short time scale of
lake drainage, and therefore represent the total crevasse opening
Au (as needed in Eq. (12) above to characterize resistance to flow
down the crevasse) as

an

n(pgH — a,)

_ n(Pinlel - Uu)
Al =
. g

W C

w (18)

where 6, = p;..gH. A recent study addresses in another context
how a pre-existing subglacial drainage system interacts with fluid
penetration along it [18].

5 Estimating the Time Scale for Lake Drainage

In this section, we estimate the time scale for lake drainage
using our model for combined flow in the vertical conduit and
basal fracture. Equation (6) is solved for the evolution of the basal
fracture using an inlet pressure pj,, found by coupling the verti-
cal conduit with the basal fracture through

Qbasal = Qverl

Using Egs. (10) and (13), this can be rearranged to find an equa-
tion for the inlet pressure
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P

W 3 1
0.15 <@> ((p = pice)gH — Ap)*(Ap + C(p — pice)8H)

= ApeF(L/H) (20)
where we have defined the excess inlet pressure to be
Ap = Pinter — picegH and the function

F(x) = 25(1 + 0.125x + 1.218x> + 0.129x° + 0.189x*) (21

For C =0, Eq. (20) can be solved analytically, allowing pj,je, to
be written as a function of L. This turns Eq. (6) into a single ordi-
nary differential equation (ODE) for the length of the basal frac-
ture L that is solved using built-in MATLAB routines. The solution is
slightly more complicated when C # 0, and Egs. (6) and (20)
must be solved simultaneously. It can be shown that Egs. (6) and
(20) form a system of differential-algebraic equations of index 1,
leading to two possible solution methods. The first method
involves treating Eq. (6) as a single ODE while solving the alge-
braic equation at each time-step using standard root finding meth-
ods, and the second method involves differentiating Eq. (20) with
respect to time to yield an ODE for p;,e that is solved alongside
Eq. (6). Both methods were tested and found to give consistent
results, though all results shown from this point onward were pro-
duced using the root finding method.

Figure 5 shows the evolution of L and pj,., for the parameters
given in Table 1 and a range of values of C between zero and two.
As shown later, for the largest values of C, the lake can com-
pletely drain. When total drainage occurs, we terminate the solu-
tions and indicate this by a solid circle in Fig. 5. We observe that
the basal fracture grows to a length of several kilometers within a
few hours, with larger values of C leading to faster fracture
growth. This is to be expected since a larger value of C corre-
sponds to a wider vertical conduit, and thus a larger water flux
delivered to the basal fracture. Interestingly, we observe that the
inlet pressure is relatively insensitive to changes in C, with the
inlet pressure typically close to the ice overburden ¢,. However,
the sensitive dependence of Uy, on the difference between pjgie;
and o, turns this small difference in excess pressure into a pro-
nounced difference in basal fracture length. The small excess
pressures shown in Fig. 5 mean that elastic opening of the vertical
conduit is typically small when compared to the opening due to
creep in the period immediately before rapid drainage commen-
ces. This is shown in Fig. 5 where we observe that the average
conduit opening quickly returns to A = Au“" as the inlet pressure
falls toward ,. We do not show the evolution of conduit opening
for C=0.5 and C = 1.5 since it is qualitatively similar to the solu-
tions for C =0, 1, and 2, with the average conduit opening falling
to A" over a time scale of approximately half an hour.

Using our solution for L and pj,e, We can calculate the water
flux from the lake and into the basal fracture using Eq. (13). The
evolution of this flux is also shown in Fig. 5. We observe that at
the onset of rapid drainage, the flux increases rapidly before
reaching a state where the flux remains almost constant. Our
results show a strong dependence of the water flux on C, which is
to be expected when elastic opening of the vertical conduit is
small. Importantly, in the solution for C =0, where creep is
neglected and all opening of the conduit is elastic, we see that the
conduit quickly closes as the inlet pressure drops preventing the
lake from draining. In Fig. 5, we indicate the average water flux
of ~ 8700 m>/s inferred in Ref. [1] using a dashed line and find
that this is best matched by the solution with C = 1.5.

Our calculations for the water flux into the basal fracture can be
used to predict how the lake surface height drops once rapid drain-
age begins. To do this, we must first make some assumptions
about the geometry of the lake. We assume an axisymmetric lake
with a parabolic shape, which allows us to relate the radius of the
lake r at a given distance below the lake surface z, where z is taken
to be positive in the upward direction and zero at the initial lake
surface. For this parabolic shape
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Fig.5 A plot showing how the basal fracture length, inlet pressure, conduit opening, and water
flux into the basal fracture evolve for a range of values of C between 0 and 2.0. Dots at the ends
of the curves mark complete drainage of the lake. These results were produced using the pa-
rameters given in Table 1. We see that the flux into the fracture increases with C, leading to
more rapid growth of the basal fracture. The average flux of 8700 m%/s inferred in Ref. [1] is plot-
ted as a dashed line. Our results also show that inlet pressures quickly fall from the initial
hydrostatic value to close to s, and this is accompanied by elastic closing of the conduit

opening.
PR D . Auit 2 z
= O((Z + )7 o= D ( ) i)
L ©
< g
) 23
where D is the initial lake depth, and & is a constant determined e £
using observations of the initial lake surface area Aj,;,. This allows 2 -
us to find the area of the lake at any depth z and initial lake 8 E A
volume Lg -
7=
Aini D DAy v .5
A(Z) _ 1mt(ZD+ )7 it = 2mll (23) ‘%é
= 10 . . . .
Thus, using the measurements of Aj; =5.6 km? and Vini 15 16 17 18 19 20

= 44 x 10° m® from Ref. [1], we estimate the initial lake depth to
be ~ 15.7 m.

Having approximated the lake geometry and estimated the ini-
tial depth, we now model the lake drainage using our solution for
QOyere and rewrite this in terms of the lake surface height using our
solution for A(z) to find

dv dz

— = —Uvertlt), —=—
i = Q) g

DQvert (t) (24)
Aunit(z + D)
where V is the current volume of water in the lake. To conclude,
we try to match our model with the observations of a falling lake
surface from Ref. [1]. Figure 6 shows how the lake depth drops
for the parameters given in Table 1 and C =2. To find this optimal
value of C, we tested a range of values with a spacing of 0.1. We
find reasonable agreement with the observational data for the
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Hour of day

Fig. 6 Data from the 2006 lake drainage event reproduced from
Das et al. [1] with an additional curve showing our model pre-
diction for the parameters are given in Table 1 and C=2.0,
meaning that the creep opening is twice what would be the ini-
tial elastic opening of the crack—crevasse system if subjected
to hydrostatic water pressure

period of most rapid drainage but are unable to match the gradual
onset of drainage shown in the data.

6 Conclusions

We have reviewed understanding of the coupled fluid and solid
mechanics underlying an important class of natural hydraulic
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fractures, involving rapid lake drainages through and under ice
sheets and glaciers by turbulently flowing meltwater.

Our particular focus was on the 2006 rapid drainage event at a
well-instrumented supraglacial lake, of ~44 x10° m” volume, on
the Greenland ice sheet. Once rapid drainage began, the lake
drained into the ice within 1.0-1.5 hr.

We showed that our modeling of the drainage time has good
correspondence with observational constraints on the rapidity of
drainage. Although it is reasonable to assume that the ice responds
elastically on such a short time scale, we noted that there was
~16 hr of slow drainage (shown by ~15mm/hr fall in lake level),
before the breakout to rapid drainage.

Therefore, using standard temperature dependent power law
creep modeling of ice, we quantified possible slow creep opening
over that 16 hr period, due to hydrostatic pressurization of a verti-
cal cracklike crevasse system, 2.7 km long as exposed at the sur-
face, which connects the lake bottom to the glacial bed, 1km
below. The crevasse is presumed to be the main conduit for the
water.

A creep parameter C was introduced, giving the ratio of the
creep opening to what would be the elastic opening of that same
vertical crack—crevasse if its surfaces were loaded by hydrostatic
fluid pressure. Values of C in the range of 1.5-2.0 were shown to
give an excellent fit to the observations; the former best predicts
the average flux of water out of the lake (Fig. 5, lower right),
whereas the latter best fits the maximum observed rate of lake
level descent (Fig. 6).

Using data on the temperature dependence of creep, we con-
cluded that ice in the vicinity of the lake would have to respond as
if it had a temperature in the range of —7.0 to —5.0 °C to produce
such values of C.

GPS measurements were also reported in Fig. 2(c) of Ref. [1]
and it is not yet clear that our present style of modeling, even if
improved in sophistication, can fully explain them. They show
that the ice sheet was moving primarily to the west with a slight
northern trend (at 6% of the westward motion) prior to the rapid
drainage event. The event itself caused a rapid 0.8 m displacement
of the GPS site to the north, which was followed by its gradual
return south over the next 2 days, after which the primarily west-
ward pre-event motion was recovered.

Based on that pre-event motion, we must assume that the shear
traction on the base of the ice sheet was primarily eastward-
directed prior to the hydraulic fracture and lake drainage. Further,
if the vertical crack/crevasse system (Fig. 1) became highly pres-
surized over a multihour period before the basal hydraulic fractur-
ing, the deformation caused by that pressurization was resisted not
just by the stress-dependent creep flow within the ice sheet (which
we have modeled here), but also by the development of a compo-
nent of traction at the base of the ice sheet, which would be a trac-
tion component in a direction approximately orthogonal to the
pre-event eastward traction, and its development is expected to
attenuate the short-term creep motion of the ice sheet in a manner
consistent with the minimal observed northward displacements at
the GPS site prior to the hydraulic fracture. At present, we have
no good procedure to describe the process and its effect on the
creep opening, which we have modeled here as if there was no
basal shear resistance.

However, an assumption of no (or negligible) basal shear resist-
ance is reasonable over the part of the base that is being hydrauli-
cally fractured, and hence for assessing the elastic part of the
response to crack/crevasse opening. It is clear that a fuller analysis
of the basal creep mechanics and shear resistance, in a manner
which also rationalizes the GPS observations, is a significant goal
for future clarification.
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Nomenclature

Ajpir = initial lake surface area
Ac(T) = power law creep parameter
A(z) = area of lake cross section at any depth z
= ratio of creep to elastic opening of hydrostati-
cally pressurized vertical crevasse
D = initial lake depth at deepest point
E = Young’s modulus
E' = E/(1 — ) = effective modulus in plane strain
f = Darcy—Weisbach friction factor
¢ = gravitational acceleration
H = uniform ice sheet thickness (~1 km)
have (1) = average opening gap of basal fracture
Hi . = lake water level
h(x, t) = opening gap of basal fracture
k = Nikuradse wall roughness amplitude
Kj. = mode I fracture toughness of ice
K,s(x,z) = Erdogan elasticity kernels
L(¢) = half-length of basal fracture
n = power law creep exponent
Pinter (f) = fluid pressure at basal entry x =0
p(x, t) = basal fluid pressure distribution
O = maximum volumetric discharge
= volumetric discharge rate into basal fracture
QOverr = volumetric discharge rate through vertical
crevasse
r = radius of the lake at a given depth
R = radius of the basal fracture when assumed
circular
Re = Reynolds number
s,z = deviatoric stress components
t = time
T = temperature
U = thickness averaged fluid velocity in basal
fracture
Uyp = fracture propagation velocity (= dL/dr)
U,ere = thickness averaged fluid velocity in crevasse
Vinic = initial volume of the lake
V(t) = volume in the lake
W = horizontal length of vertical crack—crevasse

X = x-axis
y = y-axis
7 = z-axis
Ze1 = GPS-recorded ice uplift
& = constant determined using observations
Ap = excess inlet pressure piger — G,
Au(r) = average opening gap of vertical crevasse

Au,(x,z,t) = displacement discontinuities
A" = average creep crevasse opening
Aii*' = average elastic crevasse opening
y = Mises equivalent engineering shear strain
k(n) = numerical correction factor depending on n
v = Poisson ratio
p = mass density of water
Pice = mass density of ice
0, = ice overburden pressure p;..gH
o45(X, z,1) = stress components
T = Mises equivalent shear stress
Twan = wall shear stress
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