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Green’s Functions for Surface Waves in a Generic Velocity Structure

by Victor C. Tsai and Sarun Atiganyanun*

Abstract Methodologies for calculating surface-wave velocities and the associated
displacement/stress eigenfunctions and Green’s functions have been well established
for many decades. However, to our knowledge, no one has ever documented a quan-
titative evaluation of these properties for commonly used empirical scalings. For ex-
ample, it is currently not possible to take a given power-law dependence of shear-wave
velocity on depth and look up the corresponding dependence of phase velocity on
frequency, or Green’s function surface displacement. We address this gap in the liter-
ature and here provide explicit quantitatively accurate expressions for phase velocities
and Green’s function amplitudes for a few commonly used empirical formulas for
near-surface velocity structure. These exact expressions are found to be immediately
useful in applications that use shallow phase velocities and also in applications that
interpret seismic amplitudes or amplitude ratios from near-surface processes such as
fluvial transport, icequakes, landslides, and volcanic tremor.

Introduction

In the last decade, there has been an increasing interest in
using seismology to quantitatively analyze near-surface proc-
esses such as landslides (e.g., Ekstrom and Stark, 2013), gla-
ciers (e.g., Tsai and Ekstrom, 2007), rivers (e.g., Burtin et al.,
2008), and volcanic tremor (e.g., McNutt and Nishimura,
2008). In parallel, there has also been an exponential growth in
ambient noise cross-correlation applications in which a given
station-pair cross correlation is assumed to be related to the sur-
face-wave Green’s function (e.g., Snieder, 2004; Shapiro et al.,
2005). In both cases, these studies either explicitly or implicitly
rely on knowing the surface-to-surface Green’s function (or im-
pulse response function) to make quantitative use of data.

However, despite such surface-to-surface Green’s func-
tions being necessary, an explicit form for these Green’s
functions is rarely described in detail, with many authors as-
suming their readers have access to the numerical software
necessary to reproduce the Green’s functions. Although this
may be a fair assumption in many cases, it is not in others.
Moreover, calculating the complete Green’s functions for a
specific case may take significant time, whereas the reader is
often interested in an approximate but quantitative estimate of
the Green’s function. Methodologies for computing Green’s
functions have been around for many decades (e.g., Alterman
et al., 1959), but it still is not possible for a reader to perform
the quick quantitative estimate described above. In this short
note, we address this problem by providing explicit results for

Love- and Rayleigh-wave Green’s functions for some generic
seismic structures. It is expected that these quantitative results
will be useful for the study of noise cross correlations as well
as near-surface processes.

Methodology

The goal of this short note is to quantitatively derive ex-
pressions for surface-wave (both Love and Rayleigh) phase
velocities and Green’s function amplitudes for a few simple
given velocity structures, for which it is assumed that shear
modulus μ�z�, Poisson’s ratio ν�z�, and density ρ�z� are all
provided as a function of depth z. To accomplish this, we
follow the numerical integration approach of Alterman et al.
(1959), as described in detail in Aki and Richards (2002,
pp. 267–268). For each given frequency, ω � 2πf, one
solves for k � 2π=λ, along with the associated eigenfunc-
tions (displacement l1�z� and stress l2�z� for Love waves;
displacements r1�z� and r2�z� and stresses r3�z� and r4�z�
for Rayleigh waves). Once these are known, phase velocities
are given by c�ω� � ω=k�ω� and the frequency-domain
far-field Green’s functions can be written as
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in which GL
xy�w� and GR

xy�w� are the Love and Rayleigh dis-
placements in the x direction for a unit sinusoidal load e−iωt in
the y direction, and kL�ω� and kR�ω� are the Love and Ray-
leigh wavenumbers, respectively (Aki and Richards, 2002). cp,
Up, and Ip1 are phase velocity, group velocity, and integrals
of the eigenfunctions over depth, for Love (p � L) and
Rayleigh waves (p � R). Note that cp � ω=kp�ω�,
Up � �∂kp=∂ω�−1, 2IL1 � R∞

0 ρ�z�l1�z�2dz, and 2IR1 �R∞
0 ρ�z��r1�z�2 � r2�z�2�dz.

In this work, we concentrate on near-surface forces and
observations for which surface waves are expected to domi-
nate, and therefore we begin by setting z � h � 0 in the
Green’s functions. As discussed in Tsai et al. (2012), the factor
r22�0�=IR1 scales with kR=ρ0 (for constant density ρ0), and we
expect similar scalings for l21�0�=IL1 and ri�0�rj�0�=IR1 . With
known kp�ω�, the surface-to-surface Green’s function is there-
fore completely characterized by one and two nondimensional
numbers for Love and Rayleigh waves, respectively, as

NL � ρ�0�l21�0�
kLIL1

and NR
ij �

ρ�0�ri�0�rj�0�
kRIR1

; �2�

in which i and j are either 1 or 2, and it is easily shown that
NR

12 � NR
21 and �NR

12�2 � NR
11N

R
22 (leaving only two indepen-

dent numbers, say NR
11 and NR

12 for Rayleigh waves). The
depth dependence of the Green’s function will be discussed
later. The amplitude of the surface-to-surface Green’s func-
tions can then be written as
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in which the directional dependences are as in equations (1a)
and (1b), ρ0 � ρ�0�, and we have added anelastic terms that
depend on Qp (where p � L or R, as before). Here, GR

ij de-
notes only the two inplane components of the Rayleigh wave,
with j being either a longitudinal or vertical force (1 and 2,
respectively), and i being the longitudinal or vertical displace-
ment directions. The full GR is easily constructed from GR

ij

from analogy to equation (1b).

Results

We tabulate results for a few different examples of em-
pirical scalings that have been proposed recently. At first, we
focus on a class of power-law scalings in which shear veloc-

ity is a power-law function of depth, β�z� � β0�z=z0�α, and
in which density is constant, ρ�z� � ρ0. This class of power-
law scalings includes one of the simple scalings of Boore and
Joyner (1997), and many studies of near-surface structure use
generic models that are well fit by power-law scalings (e.g.,
Wald et al., 1991; Silva et al., 1999). As will be shown, this
power-law velocity structure also results in a power-law
dependence of phase velocity on frequency, which has been
a common assumption of various authors (e.g., Ferrazzini
et al., 1991; Metaxian et al., 1997). Other empirical analysis
has also used piecewise power-law scalings (and with density
scaling with velocity), and results for such a case will be dis-
cussed later. In this study, we only calculate results for fun-
damental mode (n � 0) surface waves due to their usual
observed dominance, but the same analysis could be ex-
tended to examine surface-wave overtones.

Power-Law Scaling of Velocity and Constant Density

With power-law scaling of shear velocity, β�z� �
β0�z=z0�α, constant Poisson’s ratio ν and constant density
ρ0, nondimensionalization of the governing equations is found
to be particularly enlightening. Choosing length scale z0 and
velocity scale β0, then l′1 � l1=z0 and similarly for r1 and r2,
and l′2 � l2=ρ0β20 and similarly for r3 and r4. This also leads to
z′ � z=z0, k′p � z0kp,ω′ � z0ω=β0, and governing equations
that are independent of dimensional parameters. (The Ray-
leigh-wave system still depends on Poisson’s ratio.) For exam-
ple, the Love-wave governing equations can then be written as

d
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In terms of the nondimensional solution k′p�ω′�, the dimen-
sionally correct frequency and phase velocity are therefore
given by ω � β0ω

′=z0 and cp � ω=kp � β0ω
′=k′p. At this

point, one can observe that for the power-law scaling of veloc-
ity, the ratio γ0 ≡ β0=zα0 (along with α) completely determines
β so that β0 and z0 are not independent. For a given γ0 and α,
β0 is related to z0 by β0 � γ0zα0. Perhaps surprisingly, this im-
plies that the solution for k′p for a single choice of ω′ (e.g.,
ω′ � 1) completely determines the behavior of cp for all ω
because one can rewrite ω � γ0ω

′zα−10 and therefore
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Similarly, l′1�ω′� for a single choice ofω′ completely determines
l1�ω�. Moreover, nondimensionalization of equation (2) shows
that NL and NR

ij are actually independent of ω. For example,

NL � 2�l′1�2�0�=k′L
R∞
0 �l′1�2�z′�dz′, which is similar to that

for NR
ij. Because the governing equations, like equation (4),

are also independent of dimensional parameters, k′p, NL, and
NR

ij are all independent of β0 (or γ0) and only depend on α

(and ν for Rayleigh waves). This exact result confirms that the
power-law scaling of velocity with depth implies a power-law
scaling of phase velocity with frequency, as was suggested by
the approximate analysis of Tsai et al. (2012) (in which eigen-
functions were assumed to decay exponentially with depth), as
well as that of Godin and Chapman (2001). The result addi-
tionally indicates that the complete frequency dependence is
determined by a single constant for phase velocity and single
constants for NL and NR

ij.
In Figure 1, we plot the constant �ω′�1=�1−α�=k′p (normal-

ized phase velocity) for a range of reasonable values of α
(e.g., Boore and Joyner, 1997) and, in Figure 2, we plot NL

and NR
ij (normalized amplitudes) for the same range of α and

three different values of Poisson’s ratio (ν � 0:3, 0.25, and
0.33 in Fig. 2a, 2b, and 2c, respectively). The values in Fig-
ure 2 can be directly substituted into equation (3) to obtain the
Green’s function amplitudes. It is of interest that the relative

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
ω

′ 1
/(

1-
α)

/k
p'

α

Love

ν=0.3

ν=0.25

ν=0.3
3

Figure 1. Nondimensional phase velocity coefficient
�ω′�1=�1−α�=k′p for Love waves (dashed line) and Rayleigh waves
(solid lines) for a range of power-law exponents α. Rayleigh results
are plotted for three choices of Poisson’s ratio (0.25, 0.3, and 0.33,
with shading going from dark to light). As explained in the text, cp0
is obtained by multiplying the nondimensional coefficient by
�β0=�ω0z0�α�1=�1−α�; see equation (5) for details, including phase
velocity scaling with frequency. These exact results differ from the
approximate scaling of Tsai et al. (2012) by only a modest factor
that is independent of all parameters (including frequency ω) except
α. The approximate result of Tsai et al. (2012) can therefore also be
expressed as a nondimensional phase velocity coefficient with a
value of Γ�1� α�1=�1−α�, in which Γ�x� is the gamma function.
The color version of this figure is available only in the electronic
edition.
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Figure 2. Nondimensional Green’s function amplitudes NL and
NR

ij, as described in equation (2), for a range of power-law expo-
nents α. In each panel, shading is identical and corresponds to
the labels in panel (a). Note that −NR

12 is the geometric mean of
NR

11 and NR
22, and NR

12=N
R
22 is commonly referred to as the Ray-

leigh-wave H/V ratio or Rayleigh-wave ellipticity. The results
are shown for (a) the default Poisson’s ratio of ν � 0:3;
(b) ν � 0:25 (thick lines), with results in (a) as thin lines for refer-
ence; and (c) ν � 0:33 (thick lines), with results in (a) as thin lines
for reference. The color version of this figure is available only in the
electronic edition.
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Love-wave amplitudes increase with α, as might be expected
with higher confinement of energy at shallower depths. In ad-
dition, the ratio of horizontal-to-vertical (H/V) Rayleigh-
wave energy (e.g.,NR

11=N
R
22) also increases with α, for similar

reasons, as is well known from microtremor studies (e.g., Fah
et al., 2001). To obtain Love- andRayleigh-wave phase veloc-
ities, one should take the values in Figure 1 and multiply by
�β0=�ω0z0�α�1=�1−α� to obtain cp0. For example, for the empiri-
cal shear-wave profile of Boore and Joyner (1997), in which
β0 � 2206 m=s, z0 � 1000 m, and α � 0:272, the factor
in Figure 1 is 1.06 for Love waves and 1.09 for Rayleigh
waves (ν � 0:3) so that cL � 1582 m=s �f=1 Hz�−0:374 and
cR � 1626 m=s �f=1 Hz�−0:374. For this same profile,
NL � 2:10, NR

11 � 0:88, NR
12 � −0:81, and NR

22 � 0:75, so
that the Rayleigh-wave H/Vamplitude ratio is 1.08. It is also
of interest that the Rayleigh-wave H/V ratio transitions from
less than 1 to greater than 1 as α increases above 0.234 for
ν � 0:3, 0.213 for ν � 0:25, and 0.249 for ν � 0:33. For
the majority of near-surface structures α > 0:23, implying
Rayleigh-wave H/V ratios are typically greater than 1, as ex-
pected. Figure 3 shows the eigenfunctions li and ri for a few
different choices of α (0.2, 0.3, and 0.4).

Piecewise Power-Law Scaling of Velocity

To supplement the results for a simple power-law scal-
ing of velocity with depth, we provide one example of a more
realistic generic rock site velocity profile from Boore and
Joyner (1997) which is composed of five separate piecewise
power-law scalings that are joined together as

β�z� �

8>>>><
>>>>:

245; z′ ≤ 0:001
2206�z′�0:272; 0:001 < z′ ≤ 0:030
3542�z′�0:407; 0:030 < z′ ≤ 0:190
2505�z′�0:199; 0:190 < z′ ≤ 4:00
2927�z′�0:086; 4:00 < z′

; �6�

in which z′ � z=�1000 m� and β is in meters/second. This
piecewise power law is thought to be more realistic than
the single power law over a wide range of depths but has
the obvious disadvantage that it cannot be treated in the same
way as our previous analysis for a single power law. Instead,
we must perform computations over a range of frequencies,
and in Figure 4 we show results for frequencies ranging from
0.2 to 40 Hz (with ν � 0:3). Here we also use the more
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this figure is available only in the electronic edition.
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realistic empirical scaling of density with shear velocity of
ρ � 2500� 93:75 × �β=1 km=s − 0:3�, in which ρ is in
kilograms per cubic meter (Boore and Joyner, 1997). This
empirical scaling of density is only modestly different from
a constant, and it may be noted that using a constant density
yields similar results.

As shown in Figure 4a, both Love- and Rayleigh-wave
phase velocities no longer follow pure power-law trends but
approximately follow the expected trends (see thin black
lines of Fig. 4a) over some limited range of frequencies and
with sometimes substantially different prefactor constants. It
is worth noting that the frequencies at which the different
power-law trends transition occur at roughly those expected
based on the depth sensitivity of waves of a given frequency.
For example, the transition from α � 0:199 to α � 0:407 oc-
curs close to 2 Hz, at which 1=kL ∼ 120 m and 1=kR ∼ 130 m,
close to the 190 m depth at which the assumed velocity struc-
ture changes power-law form.

On the other hand, although the scaled Green’s function
amplitudes NL and NR

ij (Fig. 4b) have the expected behavior

of large NL and NR
11=N

R
22 (H/V ratio) for higher α (and thus

more pronounced of a low-velocity layer), the transitions are
at much lower frequencies than those for phase velocities.
For example, the H/V ratio transitions from less than 1 to
greater than 1 at roughly 0.5 and 4 Hz, respectively, where
the naive predictions based on depth sensitivity would put
these transitions at roughly 2 and 50 Hz, respectively. This
general feature that Rayleigh-wave H/V ratios are sensitive to
much shallower structure than might be intuitively guessed
agrees well with the previous results of Lin et al. (2012)
for longer periods. Although not entirely intuitive, the primary
reason for this behavior is that the boundary conditions are
much more strongly affected by near-surface velocity structure
than the average shape of the eigenfunctions li and ri. We also
note that the peak in NL coincides nearly identically with the
peak of NR

11=N
R
22. This may partly explain the difficulty, of

traditional microtremor H/V studies, from distinguishing
between the effects of Rayleigh-wave ellipticity and Love-
to-Rayleigh in causing observed microtremor H/V ratio
differences (Nakamura, 1989; Fah et al., 2001; Bonnefoy-
Claudet et al., 2006).

Conclusions

In this work, we have evaluated the Love-wave and
Rayleigh-wave phase velocities and Green’s function ampli-
tudes for a few different commonly used empirical scalings.
For a pure power-law dependence of shear-wave velocity on
depth and constant density and Poisson’s ratio, we find a par-
ticularly simple solution, in which results for all frequencies
ω and all β0 are determined with a single solve of the gov-
erning equations for a given frequency ω0. The power-law
scaling of phase velocities with frequency is found to agree
with the scaling derived by Tsai et al. (2012), but the numeri-
cal prefactors are determined quantitatively here. In addition

to the pure power-law case, we also evaluate results for the
more realistic but generic velocity profile of Boore and Joy-
ner (1997). These results suggest that the simple power-law
scalings can be used to understand the results in the entire
range of frequencies but that the frequency at which the scal-
ings transition is substantially lower for the Green’s function
amplitudes, compared with the corresponding transition for
phase velocities.

Despite a pure power-law velocity structure (with con-
stant density) being an idealization of any realistic structure,
the exact results provided here for this case should prove use-
ful as a first approximation for many surface-wave studies. In
particular, the expressions derived are of use for any studies
that use near-surface Green’s functions. For example, a wide
range of ambient noise cross-correlation studies make use
of surface-to-surface Green’s functions, either explicitly or
implicitly (e.g., Shapiro et al., 2005; Lin et al., 2008; Prieto
and Beroza, 2008). Other studies of near-surface phenomena
such as river sediment transport (Burtin et al., 2008; Tsai et al.,
2012), sea ice (Kedar et al., 2008; Stutzmann et al., 2009; Tsai
and McNamara, 2011), landslides (Hibert et al., 2011; Ek-
strom and Stark, 2013), and volcanic tremor (McNutt and
Nishimura, 2008) also make use of surface-to-surface surface-
wave amplitudes. For such studies of near-surface seismic
sources, the tabulation of the coefficients NL andNR

ij will pro-
vide a useful estimate of the expected ground-motion ampli-
tudes, which is a first step to utilize the seismic data to
constrain physical processes. Although it is always possible to
perform a detailed numerical study of wave propagation that
will yield more precise results in any particular case, the gen-
eral results presented here are thought to be useful nonethe-
less, due in part to their approximate applicability to a wide
range of scenarios and also to their ease of use, without need-
ing to perform another numerical simulation.
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