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Modeling Turbulent Hydraulic
Fracture Near a Free Surface
Motivated by observations of the subglacial drainage of water, we consider a hydraulic
fracture problem in which the crack grows parallel to a free surface, subject to fully tur-
bulent fluid flow. Using a hybrid Chebyshev=series-minimization numerical approach, we
solve for the pressure profile, crack opening displacement, and crack growth rate for a
crack that begins relatively short but eventually becomes long compared with the dis-
tance to the free surface. We plot nondimensionalized results for a variety of different
times, corresponding with different fracture lengths, and find substantial differences
when free-surface effects are important. [DOI: 10.1115/1.4005879]

1 Introduction

Hydraulic fracture has been studied for many years, with
numerous studies successfully applying linear elastic fracture
mechanics with a variety of flow conditions [1–3]. While near-
surface fractures have been studied [4,5], and turbulent flows have
been considered [6,7], one variation that seems to have eluded
study is that of a fully turbulent near-surface hydraulic fracture.
Recent observations in Ref. [8] along with our previous modeling
efforts [7] regarding these observations suggest that drainage of
supraglacial lakes sometimes results in subglacial flooding that
achieves this regime of hydraulic fracture. With this motivation,
in this work, we solve a fully turbulent hydraulic fracture problem
in which the fracture grows parallel to the free surface and eventu-
ally becomes long in comparison to the distance to the free sur-
face. As in our previous work and as in Ref. [9], we use constant
pressure inlet conditions, another departure from much of the hy-
draulic fracture literature [1,3].

2 Model Setup

We consider an impermeable elastic half-space with a crack
at depth z¼�H (see Fig. 1) parallel to the free surface and of
length 2L along �L< x< L. We assume that this crack, which
has rough walls, opens in plane strain subject to a constant pres-
sure input pI at its center that drives a strongly turbulent fluid
flow into the crack and causes it to grow (pI corresponds to inlet
pressure minus initial compressive stress r0¼� rzz from over-
burden). To model this hydraulic fracture close to a free surface,
we follow the approach of Ref. [7] in which a Manning-
Strickler model [10–12] for fully turbulent flow resistance is
used along with standard elasticity [13,14] and fluid mechanics
to solve for the pressure distribution p(x,t), opening displace-
ment w(x,t), thickness-averaged fluid velocity U(x,t) within the
crack, and crack growth rate Utip(t)¼ dL(t)=dt. The primary dif-
ference between Ref. [7] and the present work is that the frac-
ture is no longer assumed to be far from the free surface. Due to
the need of now accounting for the free surface, the elasticity
equations are modified from what was previously used. Instead,
we follow the formulation of Refs. [15,16] for the elasticity
relationships.

2.1 Governing Equations. As in Ref. [7], when the Reyn-
olds number Re is sufficiently large, flow resistance is determined
only by wall roughness, and the rough-wall turbulent flow resist-

ance can be approximated by a Manning-Strickler model [12] in
which the Darcy-Weisbach friction factor f¼ f0(k=w)1=3. Here f is
defined so that the average of drag stresses on the upper and lower
channel walls is fqU2=8, f0 � 0.143 [7,17,18], k is the Nikuradse
wall roughness height [17,18], and w is the opening thickness of
the channel. f is well characterized for pipe flow [17,18] and has
been generalized to our slit-like channel using the concept of hy-
draulic radius [12,17]. This turbulent flow model then provides
one relationship between p(x,t), w(x,t), and U(x,t) as
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for x> 0 (and negative of this for x< 0). Conservation of mass for
an incompressible fluid provides a second relationship as
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The elastic governing equations are assumed to be those of qua-
sistatic plane strain elasticity, which is found to be a good approx-
imation since crack tip speeds Utip¼ dL=dt are found to be a very
small fraction of elastic wave speeds for this class of hydraulic
fracture problems [1,3,19]. In order to account for free-surface
effects, we use the formulation of Erdogan et al. [15], which
implies that
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where u¼ u(s,t), w¼w(s,t), and the kij¼ kij(x,s;H) are elasticity
kernels given in Ref. [15], with notable typographical error that
Eq. (7.93) of Erdogan et al. should read “k12¼� k21¼…” instead
of “k12¼ k21¼…”. Correction of this typo has been discussed
explicitly in Ref. [20] and explains the differences between the
results shown in Refs. [15,16]. As in Refs. [3,7], Eq. (3a) assumes
that the shear stress is zero, consistent with the expectation that
shear stresses on the crack walls are small compared to fluid
pressures. This expectation can be verified by observing that
for the geologic applications in mind, PI � E0, which implies
that w0=L� 1, which in turn implies that lubrication theory
approximately applies (i.e., wall shear stress swall satisfies
2swall ¼ �w � dp=dx � pI � w0=L� pI).

The final governing equation is the fracture criterion,
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KI ¼ KIc ¼ 0 (4)

where KI is the mode I stress intensity factor, KIc is the fracture
toughness, and KIc is assumed to be small enough compared to a
nominal KI (say, pI

ffiffiffiffiffiffi
pL
p

) associated with the loading that we may
approximate it as zero. As discussed in Refs. [2,3,7], this assump-
tion is appropriate as long as L is relatively long. We note that for
the motivating problem of a draining meltwater lake, the constant
pI condition (as assumed) is appropriate and that for this condi-
tion, the KIc¼ 0 assumption becomes progressively better as the
crack grows longer [7]. We further note that the KIc along a
glacier-bedrock interface is likely to be less than the KIc within
pure ice, thus, encouraging growth parallel to the free surface, as
assumed.

The boundary conditions that close the system of equations
given by Eqs. (1)–(4) can be expressed as p(0,t)¼ pI, w(L,t)¼ 0,
U(L,t)¼Utip¼ dL=dt [7].

2.2 Solution Method. At a given time step, we solve the
governing equations by the following hybrid Chebyshev=series-
minimization method. First, we nondimensionalize x, p, u, w, U,
and t as x̂ ¼ x=L, p̂ ¼ pðx; tÞ=pI , û ¼ uE0=ðpILÞ, ŵ ¼ wE0=ðpILÞ,
Û ¼ U=Utip, and t̂ ¼ tUtip=L, where

Utip ¼ /US � /
ffiffiffiffi
pI
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r
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Next, we take p̂ðx̂; tÞ and ŵðx̂; tÞ to be given by
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and
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where Uk(x) are Chebyshev polynomials of the second kind, ak,
ck, and D are coefficients to be determined, and pk and wk are cho-
sen to satisfy Eq. (3). This term-wise satisfaction of Eq. (3) is
done by the Chebyshev method of Ref. [15], with pk and wk being

Fig. 2 Leading order pressure term p0 corresponding with
a0w0 ¼ a0½ð1� x̂Þ=2�6=7 for different values of L=H (0.02 5 black,
1 5 blue, 2 5 gray, and 5 5 red). (Colors may be viewed in the
online version of the paper.)

Fig. 3 Crack openings wk, from k 5 1 to 6, for different values of L=H. Odd wk are in
solid lines and units are on the left axis. Even wk are in dashed lines and units are
on the right axis. Blue, green and red colors correspond to 1,3,5 for odd and 2,4,6
for even, respectively. (Color may be viewed in the online line version of the paper.)

Fig. 1 Schematic for turbulent hydraulic fracture
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expressed as a Chebyshev series whose coefficients can be solved
algebraically once certain integrals are computed numerically by
Chebyshev-Gauss quadrature. The term w0 is chosen to asymptoti-
cally solve the governing equations as in Ref. [7], and the coeffi-
cients ck are chosen such that each term of the series satisfies Eq.
(4). The p0 and wk for a few choices of L are plotted in Figs. 2 and
3. It may be noted that since pk and wk pairwise satisfy the elastic
governing equations, then by linearity p̂ and ŵ also satisfy the
elastic equations, but they do not yet satisfy the fluid equations or
boundary conditions.

Choosing a0 � 14 tanðp=7Þ=3 as in Ref. [7], then asymptotic
analysis shows that

p̂! �D½ð1� x̂2Þ=2��1=7
as x̂2 ! 1 (8)

As in Ref. [7], this singular solution neglects fluid lag effects [21].
Taking the same limit (x̂! 1) in Eq. (1) then yields

/ ¼ 2a
2=3
0 D7=6

ð7f0Þ1=2
(9)

and Eq. (1) with Eq. (2) can be rewritten as
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We then approximately solve Eq. (10) by choosing ak to mini-
mize the normalized error (over equally spaced points from
x̂ ¼ 0 to x̂ ¼ 1) between the right-hand-side (RHS) and left-
hand-side (LHS) under the constraint that w is always positive.
In order to evaluate the RHS of Eq. (10), a backwards Euler
method is used to approximate @w=@t, using the known w(x,t�1)
and the unknown w(x,t0) to compute an approximate
@w=@t � ½wðx; t0Þ � wðx; t�1Þ�=Dt. In the first time step, the self-
similar solution of Ref. [7] is used to estimate @w=@t instead of
the backwards Euler method.

2.3 Solution. Using the solution method described in Sec.
2.2, we solve for the growth of the crack starting from an initial
crack length that is small compared with the distance to the free
surface (L=H ¼ 0:02� 1) up to L=H¼ 5. As in Refs. [3,7], we
find that taking a small number of terms in Eqs. (6) and (7)
adequately represents the solution. In particular, we use terms up

to k¼ 6, corresponding to choosing N¼ 3. As discussed earlier,
we initialize conditions to be equal to the self-similar solution of
Ref. [7], with the modification that we now use six terms (N¼ 3)
instead of four terms (N¼ 2) to approximate the self-similar solu-
tion as well. We take time steps that correspond to DL=L¼ 0.05.

Snapshots of the scaled pressure distribution p̂ðx̂Þ and scaled
crack opening displacement ŵðx̂Þ are shown in Figs. 4 and 5,
respectively, for different times that correspond to the marked
L=H. Also, the average opening ŵavg along the crack (note that
2wavgL is the volume per unit thickness of fluid within the opened
fracture) and the scaled crack tip velocity /¼Utip=US are given
in Figs. 6 and 7, respectively, as functions of L=H. The pressure
distribution and crack opening at L=H¼ 0.02 are virtually identi-
cal to those of the self-similar quantities of Ref. [7] (for
L=H � 1). As L=H grows, the pressure falls more rapidly as one
moves from the inlet (x̂ ¼ 0) to the crack tip (x̂ ¼ 1) (see Fig. 4).
For drainage of surface water at hydrostatic pressure under an ice
sheet, we observe that pI=r0 � 0.1 so that atmospheric pressure is
not reached until p̂ � �10.

As expected, the crack opening increases rapidly with increas-
ing L=H such that the opening for L=H¼ 5 is about 20 times

Fig. 4 Scaled pressure p̂ðx̂Þ plotted for different values of L=H
(colors are as in Fig. 2). (Colors may be viewed in the online
version of the paper.)

Fig. 5 Scaled opening ŵðx̂Þ plotted for different values of L=H
(colors as in Fig. 4, with additional orange curve at L=H 5 3.3).
(Colors may be viewed in the online version of the paper.)

Fig. 6 Scaled average opening ŵavg versus L=H (colors as in
Fig. 5). Solid line is the polynomial fit discussed in the text.
(Colors may be viewed in the online version of the paper.)
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larger than the opening for L=H¼ 0.02 (see Fig. 6) and, therefore,
much larger than in the L � H solution of Ref. [7]. To quantify
this growth, we observe that the average opening grows close to
quadratically with L=H and that the data up to L=H¼ 3.3 are fit
reasonably well with ŵavg � 1:72þ 0:89ðL=HÞ2. This fit is accu-
rate to within � 5% for L=H	 3.3 but has substantial error for
L=H> 3.3 (at L=H¼ 5, the fit is 16% off).

Finally, the crack-tip velocity (see Fig. 7) also grows substan-
tially, with a normalized speed that is six to seven times that of
the original normalized speed (this is an increase on top of the
slow L1=6 growth inherent in the scaling of US; see Eq. (5)). Per-
forming a 2nd-degree polynomial fit to the data up to L=H¼ 3.3
yields a reasonable fit as / � 5.13þ 0.64(L=H)þ 0.94(L=H)2.
This fit is accurate to within 5% for the entire range of the plot
(up to L=H¼ 5). Given ŵavg and /, we can then calculate a 2D
total inflow rate Q as

Q ¼ dð2wavgLÞ
dt

¼ 2pI

E0
dðŵavgL2Þ

dt

¼ 2pI

E0
@ðŵavgðL=HÞL2Þ

@L

dL

dt

¼ 2pIUS

E0
@ðŵavgðL=HÞL2Þ

@L
/

(11)

Here, based on the polynomial fit above for ŵavg,
@ðŵavgðL=HÞL2Þ=@L � 2Lð1:72þ 1:78L2=H2Þ.

Thus, normalizing Q as Q̂ ¼ QE0=ð4 � 1:72 � 5:13pILUSÞ, where
the terms with decimal points correspond respectively to ŵavg and

/ when L=H ! 0, we have Q̂ � 1 when L � H, but Q̂ � 2:7

when L¼H, Q̂ � 10 when L¼ 2H, and Q̂ � 31 when L¼ 3H.
While these indicate very substantial increases of Q with L for the
conditions analyzed, of fixed inlet pressure pI, it is important to rec-
ognize that for a given L, Q is proportional to pIUS, and hence to

p
13=6
I . Thus, in an application like for rapid draining of a supragla-

cial lake along a crevasse=moulin system through an ice sheet [8],
driving a hydraulic fracture (i.e., a region of flotation) along its bed,
resistance to the vertical flow would increase with increasing flow
rate, and hence decrease pI [7]. For example, decrease of pI to
0.50pI would decrease Q to 0.22Q in the solution presented (which
is for the case that pI remains constant as the fracture grows).

3 Discussion and Conclusions

This work presents numerical solutions to a turbulent hydraulic
fracture close to a free surface. It is a natural extension of a large

literature of hydraulic fracture problems [1–3,6,7]. Unlike previ-
ous work, we solve the problem for the case in which the fracture
grows into the range where it becomes close to the free surface,
the fluid flow is in the fully turbulent flow regime (approximated
by a Manning-Strickler model), and the input pressure remains
constant. The problem, therefore, represents a different physical
set of constraints compared with previous studies.

As briefly mentioned in the Introduction, previous work sug-
gests that the current model is applicable to at least one important
class of problems, that of drainage of supraglacial lakes into sub-
glacial lakes, as observed in Ref. [8]. However, before the current
modeling can be successfully applied to this class of problems,
our previous work [7] has shown that it is important to correctly
account for the vertical drainage of water, a task that remains to
be done in a completely self-consistent manner. The strong sensi-
tivity of the present work on L=H underscores the necessity to
understand this vertical drainage better before such solutions can
be applied with confidence. Despite this known difficulty, the so-
lution that we have constructed represents a necessary first step in
the path towards understanding such problems. For example, our
solution has more realistic pressure boundary conditions com-
pared with other models of similar processes [22,23], which do
not attempt to satisfy these boundary conditions.

The solutions are shown to deviate significantly from the self-
similar solution in a homogeneous whole-space once L=H � 1 is
no longer satisfied. In particular, the pressure distribution is mod-
erately affected, the crack opening and total inflow rate are sub-
stantially larger, and the crack growth rate is also significantly
larger than when L=H � 1. These results provide important
quantitative constraints on how turbulent hydraulic fracture is dif-
ferent as free-surface effects become significant.
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Nomenclature
D ¼ coefficient in series for p and w
E ¼ Young’s modulus

E’ ¼ E=(1 � v2)¼ effective modulus in plane strain
H ¼ distance of crack from free surface
KI ¼ mode I stress intensity factor

KIc ¼ mode I fracture toughness
L ¼ half length of crack
Q ¼ two dimensional total fluid flow rate

U(x,t) ¼ average fluid speed within crack
Utip ¼ crack tip speed
US ¼ velocity scale
Uk ¼ Chebyshev polynomials of the second kind
ak ¼ coefficients in series for p and w

f ¼ Darcy-Weisbach friction factor
k ¼ Nikuradse roughness height

kij ¼ Erdogan elasticity kernels
p(x,t) ¼ pressure distribution along crack

pI ¼ constant input pressure at center of crack
p0 ¼ leading-order pressure term corresponding with w0

pk ¼ terms in pressure series corresponding with wk

t ¼ time
u(x,t) ¼ crack shear displacement
w(x,t) ¼ crack opening displacement

wavg ¼ average crack opening displacement
wk ¼ terms in crack opening series corresponding with pk

x ¼ horizontal position along crack
z ¼ vertical position
/ ¼ constant for velocity scale
q ¼ fluid density

Fig. 7 Scaled crack-tip velocity / � Utip=US versus L=H (colors
as in Fig. 5). Solid line is the polynomial fit discussed in the
text. (Colors may be viewed in the online version of the paper.)
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rij ¼ stress components
swall ¼ wall shear stress
�̂ ¼ nondimensionalized
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