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Abstract

Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving
significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such
investigations could reveal the transport properties and radial structures, with possibilities for locating and
characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes and thus on
habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we
describe other possible seismic sources, their associations with science questions constraining habitability, and
the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic
activity should occur frequently on tidally flexed ocean worlds. Their ices fracture more easily than rocks and
dissipate more tidal energy than the <1 GW of the Moon and Mars. Icy ocean worlds also should create less
thermal noise due to their greater distance and consequently smaller diurnal temperature variations. They also lack
substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments
could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of
the Moon or Mars. Key Words: Seismology—Redox—Ocean worlds—Europa—Ice—Hydrothermal. Astrobiology
18, 37–53.

1. Introduction

The ice was here, the ice was there,
The ice was all around:
It cracked and growled, and roared and howled,
Like noises in a swound!
‘‘The Rime of the Ancient Mariner’’ (1797)
by Samuel Taylor Coleridge

The coming years and decades could see the develop-
ment and launch of a series of missions to explore the

ocean worlds of the Solar System. Space missions—Voyager,
Galileo, Cassini, New Horizons (Kohlhase and Penzo, 1977;
Stern, 2009; Russell, 2012)—and ground-based observations
have returned strong evidence for salty oceans within Europa,
Ganymede, Callisto, Enceladus, and Titan, and indications of
potential oceans or partially molten regions in Triton and Pluto

(Nimmo and Pappalardo, 2016), Dione (Beuthe et al., 2016),
and Ceres (Ruesch et al., 2016). The primary goals of ocean
world missions would be to characterize the habitability of the
most promising bodies and to search for life. Their interiors
hold the clues for determining their thermal and chemical
makeup and thus their habitability.

Planetary interiors have been investigated mainly with
combined gravity and magnetic field mapping. However,
these techniques cannot unambiguously retrieve structural
boundaries (petrological or mechanical). Radar sounders can
provide information on such transitions, but their signals can
penetrate to only tens of kilometers at most, due to scat-
tering and dielectric absorption. The technique that can most
efficiently reveal the detailed structures of planetary interi-
ors is seismology. Ultrasensitive seismometers are critical
for detecting faint motions deep within a planet and activity
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closer to the surface. Such motions can be used to determine
interior density structure and reveal active features such as
plate tectonics, volcanism, oceanic and ice flow, and geyser-
like eruptions. These broad applications of planetary seis-
mology have been well explored at solid silicate bodies,
including the Moon, Mars, and Venus (e.g., Lognonné, 2005;
Knapmeyer, 2009). In this paper, we focus on assessing the
habitability of ocean worlds by listening for distinct ‘‘vital
signs’’ of present-day activity—fluid motion in the shallow
subsurface, seismic signals emanating from cryovolcanoes,
and internal ocean circulation—by analogy with recent de-
velopments in cryoseismology on Earth (Podolskiy and Walter,
2016).

Seismology could aid in understanding the deposition of
materials on icy surfaces of ocean worlds and their exchange
with an underlying ocean. Extrusion of brines onto the
surface (Collins and Nimmo, 2009; Kattenhorn and Prock-
ter, 2014) may create conditions analogous to geyser for-
mation and eruption on Earth, which have in recent years
been shown to have distinct seismic characteristics (e.g.,
Kedar et al., 1996, 1998). By constraining the rate of frac-
turing and fluid motion within the surface ice, seismology
could establish better bounds on the rate of overturn of the
surface, which on Europa has been linked to the flux of
oxidized materials into the underlying ocean (Hand and
Chyba, 2007; Hand et al., 2009; Greenberg, 2010; Pasek and
Greenberg, 2012; Vance et al., 2016). Moreover, the distinct
seismic profile of the ocean constrains the salinity and pH of
the ocean and thus the redox flux integrated through time
(Vance et al., 2017). Seismic measurements can help reveal
the extent to which surface hydrocarbons on Titan interact
with the near subsurface (Hayes et al., 2008) and underlying
aqueous ocean (e.g., Fortes, 2000; Fortes et al., 2007;
Grindrod et al., 2008). Europa’s layered linear fractures and
bands are possibly organized by plate tectonics and sub-
duction (Greenberg et al., 1998; Kattenhorn and Prockter,
2014), suggesting different mechanisms of fracturing that
may also occur on other worlds. Each of these should have
unique seismic signatures. Porosity gradients (Nimmo and
Manga, 2009; Aglyamov et al., 2017) may be exploited—
via their distinct wave speeds, attenuation, and anisotropy—
as a measure of near-surface fracturing, but are also sources
of scattering and seismic attenuation of weaker signals from
the deeper interior. While planned mapping and radar may
establish the distribution of fluids and the connection of
fractures to the deeper interior, only seismology can identify
deeper interfaces between fluids and solids.

The large satellites—Ganymede, Callisto, and Titan—
contain oceans that extend hundreds of kilometers into their
interiors (Vance et al., 2014, 2017). These deep ocean worlds
are intriguing targets for astrobiology because of the pos-
sibility for remnant heat and internal activity and because
the high pressures in their interiors may provide clues to the
nature of volatile-rich exoplanets. Dense high-pressure ices
(III, V, VI) can cover the lower portions of their oceans (e.g.,
Poirier, 1982). Experimental measurements of phase equi-
libria (Hogenboom et al., 1995), thermodynamics in salty
fluids (Vance and Brown, 2015), and thermal models (Vance
et al., 2014) support the idea that brine layers can occur
underneath and between high-pressure ice layers. For such
layered oceans to occur would require increased internal
heating in the rocky interior after the formation of high-

pressure ices. The related phenomenon of ‘‘upward snow’’
—buoyant high-pressure ices in the lower part of a salty
ocean—requires very high salinity that likely occurs only as
the ocean nears complete freezing, as may be the case for
Callisto (Vance et al., 2017). Fluids moving within the high-
pressure ices may govern heat transport through multiphase
convection (Choblet et al., 2017; Kalousová et al., 2018)
and porous flow (Goodman, 2016). Seismology is the only
practical means by which to determine the thicknesses of
these high-pressure ice layers, their temperature structure,
and thus their geodynamic state and the possible presence of
fluids within and between them.

Here, we offer a broad assessment of previously unconsid-
ered seismic sources on icy ocean worlds. We do not quan-
titatively model signal propagation but instead point to work
published elsewhere (Panning et al., 2017; Stähler et al.,
2017), including detailed assessments of the possible inte-
rior structures and seismic properties (Vance et al., 2017).
For currently known ocean worlds, we consider science ob-
jectives for future seismic investigations, possible imple-
mentations, and technical challenges. We suggest priorities
based on feasibility and potential science return. To moti-
vate the astrobiological applications of planetary seismol-
ogy, we first describe seismic characteristics of known and
candidate ocean worlds.

2. Seismic Characteristics of Icy Ocean Worlds

Figure 1 summarizes likely seismic sources for Europa and
their estimated acceleration spectral density (in acceleration
per root Hz) versus frequency based on prior published in-
vestigations. The response characteristics of currently avail-
able instrumentation are also shown.

2.1. Tides as a key source of seismic activity

Frequent and energetic seismic activity should occur on
all known ocean worlds, based on the estimated tidal dissi-
pation. Table 1 shows the comparative tidal dissipation es-
timated for different targets. Tidal dissipation in the ice
exceeds that in the Moon for all known ocean worlds. If
the ice is thicker than a few kilometers, tidal dissipation is
probably larger in the ice than in the rocky interior; of Eu-
ropa’s estimated dissipation of *1000 GW (Tobie et al.,
2003; Hussmann and Spohn, 2004; Vance et al., 2007) only
1–10 GW is expected in the rocky mantle. While modest in
comparison to dissipation in the ice, this exceeds the Moon’s
1 GW of tidal energy (the nominal minimum for Europa’s
mantle). Tidal deformation of the Moon generates continu-
ous ground motion with intensity following the tidal period
(Goins et al., 1981). For homogeneous small bodies such as
the Moon or the rocky interiors of ocean worlds, the pre-
dicted lag between tidal and seismic dissipation is negligible
(Efroimsky, 2012), so it should be expected that deforma-
tion on icy ocean worlds will also create ground motions
correlated with the tides.

2.2. Seismic sources within the ice

2.2.1. Impulsive events. Several prior seismic studies
have considered the seismic signals due to large surface frac-
tures on Europa (Kovach and Chyba, 2001; Lee et al., 2003;
Cammarano et al., 2006; Panning et al., 2006). These studies
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focused on broadband signals in the 0.001–10 Hz range and
trapped waves within the ice. The formation of fractures at
Europa and to a lesser extent Ganymede and Enceladus has
been modeled in detail (Lee et al., 2003, 2005; Kattenhorn
and Hurford, 2009; Nimmo and Manga, 2009; Rhoden et al.,
2012; Walker and Schmidt, 2015). The energy release and
frequency of occurrence on those bodies are unknown but
should be expected to generate similar waveforms on the
different worlds (Stähler et al., 2017). Cassini tracking data
have exposed a time-variable component to Titan’s gravity
field (Iess et al., 2012) indicating that ‘‘Titan is highly de-
formable over time scales of days,’’ with Love number k2 * 0.6
indicating the presence of a deep ocean. As at Enceladus,
this deformation is likely to manifest in the generation of seis-
mic signals, for example generated at the base of the crust
(Mitri and Showman, 2008). On Pluto, seismic sources may
be limited due to a lack of tidal deformation to drive activity.
Hypothesized convection of volatile ices within Sputnik
Planitia (McKinnon et al., 2016) may cause detectable seis-
micity, but the ice layer may be too thin for a seismometer to
probe the detailed structure at the base of the deposit. Si-
milarly, on Triton, fracturing due to ongoing tidal defor-
mation and convection within the surface ice layer, and the
cryovolcanic eruptions of nitrogen observed by Voyager 2
(Soderblom et al., 1990), could produce seismic energy and

enable characterization of Triton’s interior structure and
detection of an ocean layer, should it exist. Chaotic terrains,
sills, pits, and domes observed on Europa are also candidate
sources (Collins and Nimmo, 2009; Michaut and Manga,
2014; Culha and Manga, 2016). Their frequencies of oc-
currence and corresponding energy release are uncertain.

Impacts can also cause observable ground motions. They
are probably too infrequent on Europa to be a source of
seismic events on the notional *month-long timescale of a
lander (0.002–5 predicted direct P detections per year; Tsuji
and Teanby, 2016). For a short-duration mission, impacts are
probably no better a source of seismic information on other
ocean worlds. The impact probability for Ganymede is roughly
double that for Europa, but the expected impact speeds are
*30% smaller (Zahnle et al., 2003), reducing the kinetic
energy (as v2) and therefore the expected seismic energy.
Callisto, more distant from Jupiter, has a similar impact
probability as Europa, but with even smaller impact speeds
(40% less). The impact rate and impact speeds on Titan are
similar to, or less than, those on Callisto, and in any case
impactors would be a less effective seismic source owing to
atmospheric breakup and wind noise. Triton has a similar
rate of impacts as Europa (Zahnle et al., 2003).

The propagation of waves due to impulsive seismic events,
which has been simulated in detail for Europa, Ganymede,

FIG. 1. Europa is expected to be seismically active (Lee et al., 2003; Panning et al., 2006). A sensitive, broadband, high-
dynamic-range seismometer (red, Pike et al., 2016) could detect faint seismic signals associated with ice-quakes and fluids
flowing within and beneath the ice crust to constrain chemical and thermal structures and processes. The performance of a
10 Hz geophone (blue) is shown for comparison.
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Enceladus, and Titan (Stähler et al., 2017), is dictated by
velocity variations with depth and the strong velocity contrast
between ice and ocean. These will create trapped shear-
horizontal (SH; Love) and shear-vertical (SV; Rayleigh)
surface waves. At relatively high frequencies, Rayleigh
waves do not sense the bottom of the ice shell, and the small
depth dependence of velocity within the ice shell leads to a
nondispersive Rayleigh wave with equal phase and group
velocity. At longer periods, the waves interact with the bot-
tom of the ice shell and transition into a flexural mode with
phase velocity proportional to the square root of frequency
and group velocity higher than phase velocity by a factor of 2.
The transition between these two types of surface waves
produces a group velocity peak at a characteristic frequency
between 0.1 and 0.01 Hz that depends primarily on the ice
shell thickness (Panning et al., 2006). Another SV mode
(Crary, 1954) propagates by constructive interference of in-
ternal reflections within the ice. This constructive interference
occurs only at a characteristic frequency, f, which is a func-
tion of the ice shell thickness H and wave velocities VS and
VP in the ice, f = VS/(H cos hcr), where the critical angle is
defined as hcr = sin-1(VS/VP). For a 20 km ice shell,
f& 0.11 Hz; for a 5 km ice shell, f& 0.44 Hz. The wave
propagates at a horizontal phase velocity of VS/sin hcr & VP

and therefore arrives after the first arriving compressional
waves from the ice, but for distances of less than 30�, before
mantle phases and much precedes the direct SH waves. A
3-axis seismometer monitoring Rayleigh, Love, and Crary
waves from 0.01–10 Hz might determine ice thicknesses in
the range 5–50 km, localize events, and characterize velocity
dispersion (Kovach and Chyba, 2001; Lee et al., 2003;
Panning et al., 2006; Stähler et al., 2017).

2.2.2. Free oscillations. The measurement of very long
period surface displacements has been proposed for detect-
ing the quasi-elastic deformation of Europa’s crust (Huss-
mann et al., 2011; Korablev et al., 2011) from tilt of the
ground relative to the local gravitational field vector due to
the tidal cycle. This sort of measurement has been demon-
strated for Earth’s tide (e.g., Pillet et al., 1994). These
measurements would be sensitive to thermal deformation of
the ground, which will occur with almost exactly the same
period as the tidal deformation period. Unlike on Earth,
where lunar tides and solar effects can be separated after a
few cycles, Europa’s solar day differs from its sidereal day
by only about 1&. Tidal flexure can also be measured from
orbit (e.g., Grasset et al., 2013). Having such a capability on
a landed spacecraft could provide improved signal and a
longer temporal baseline of measurement.

The frequency and amplitude of planet-scale free oscil-
lations depend on the body’s size, the thickness of its ocean-
ice layer, and the excitation mechanism. The ‘‘football
shaped’’ mode 0S2 was used by both Panning et al. (2006)
and Lekic and Manga (2006) to illustrate possible excitation
by tidal and tectonic forcing. Although Europa’s radius is a
factor of *4 smaller than Earth’s, the frequency of 0S2 is
low (*0.1 mHz) compared to the equivalent normal mode
on Earth (*0.3 mHz) due to the presence of a water ocean,
which mostly controls the 0S2 period. Tectonic excitation of
this mode by even a Mw = 8 ice-quake is likely undetectable
(Panning et al., 2006). Tidal forcing might excite 0S2, as
investigated for Europa and Enceladus (Lekic and Manga,

2006); this may only be important if the ice shell is thick
enough for the frequency of 0S2 to be comparable with some
tidal forcing frequencies. Regardless, the frequency of many
normal modes depends on the thickness of the ice-ocean
layer. Detecting such normal modes would place a strong
constraint on the depth of the ocean and the thickness of the
ice crust, although further work is needed to look at exci-
tation of candidate modes other than 0S2.

2.2.3. Fluid movements. Fluid transport on Earth gen-
erates unique and distinctive seismic sources. Detecting
the movement of aqueous fluids within the ice would
confirm the presence, at least locally, of hydrological ac-
tivity and chemical gradients that might be associated with
life. If fluids form near the surface—for example, by ridge
formation (Dombard et al., 2013) or sill emplacement
(Michaut and Manga, 2014), or in association with accu-
mulated brines under chaotic terrains (Schmidt et al., 2011)—
they can migrate downward into the underlying warm ice and
into the ocean (Sotin et al., 2002; Kalousová et al., 2014).
Downward transport requires active tidal flexing of the ice
to keep the convective adiabat near its melting temperature.
Such heating seems likely for tidally heated worlds such as
Europa (Tobie et al., 2003; Sotin et al., 2009) but less likely
for Callisto and Titan. Alternatively, if tidal dissipation does
not sufficiently warm the ice, or if permeability exceeds a
threshold required to mobilize fluids and close porosity,
fluids may instead move laterally or even upward under
hydrostatic pressure toward topographically low regions
(Schmidt et al., 2011). Lineaments may generate melt if
they move regularly and generate sufficient shear heating
(Nimmo et al., 2007b). The slip rate needed to melt ice may
be smaller than the 10-6 m s-1 suggested by Nimmo and
Gaidos (2002), due to fluids generated at grain boundaries in
low-temperature ice (McCarthy and Cooper, 2016).

Near-surface cryovolcanic activity can take two main
forms: effusive activity—as suspected at Pluto (Moore
et al., 2016), Europa (e.g., Fagents et al., 2000; Quick et al.,
2013, 2017; Kattenhorn and Prockter, 2014), and Titan
(Tobie et al., 2006)—or eruptive activity as observed at
Enceladus (Spencer and Nimmo, 2013) and Europa (Roth
et al., 2014; Sparks et al., 2016, 2017). The latter should be
accompanied by a characteristic seismic signature that is
periodic in nature.

Earth analogues for cryovolcanic activity can be used as a
basis for estimating the amplitude and frequency content of
associated seismicity. Volcanic degassing episodes (pre-
eruptive metastable phases) often last for days to months;
similar events on ocean worlds might be expected to pro-
duce long-lived seismic signals (Harlow et al., 2004). An-
other analogue is the seismic activity observed at terrestrial
geysers, where a mixture of water, steam, CO2, and sulfur is
transported through a conduit system. During the onset of
dormant volcanic activity, seismicity is typically composed
of microquakes (Mw < 1) and long-period (LP; >1 s) events
(Chouet et al., 1994) with quasi-monochromatic signatures.
As the eruption progresses, individual LP events merge into
a continuous background noise commonly referred to as
volcanic tremor. Such events have relatively low amplitudes
and so might only be detectable in the vicinity of the seis-
mometer or seismic network. Figure 2 illustrates what
seismic information might be detected near an enceladan
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plume from volatile transport through a hypothesized con-
duit system.

In many instances observed in terrestrial volcanoes and
geysers, multiphase flow results in nonlinear interactions
between the fluid and surrounding solids, giving rise to
unique spectral signatures (e.g., Julian, 1994; Kedar et al.,
1998). The seismic signal propagated from the source to the
seismometer typically generates the appearance of a con-
tinuous ‘‘hum.’’ Unlike brittle failures in rock or ice, which
have distinct P, S, and surface waves, flow-driven ground
motion results from a continuous interaction between the
moving fluid and the surrounding rock or ice (Bartholomaus

et al., 2015; physics behind this described by Gimbert et al.,
2014, 2016). Such ground motions can be caused by a range
of fluid states and flow regimes but commonly appear as
continuous low-amplitude background vibrations (Fig. 3). A
rarely described, though especially interesting, analogue
was observed by Roeoesli et al. (2016), who recorded the
seismic signature of water in free fall draining through a
glacial moulin from the surface to its base several hundreds
of meters below. The seismic characteristics of such drain-
age events, which last several hours, bear the hallmarks of
flow-driven ground motion displayed in Fig. 3. The moulin
drainage signal has a sharp onset and abrupt stop, and var-
iable frequency content that closely tracks the measured
water level in the moulin.

Trapped liquid layers within the ice, possibly hundreds of
meters thick (Schmidt et al., 2011), would have lower sound
speeds than surrounding ice and so would act as a wave
guide if sufficiently thick. Such a wave guide was found
under the Amery Ice Shelf (H y 500 m) in East Antarctica
by using cross-correlations of ambient noise between 5 and
10 Hz. Incoherent noise makes such measurements sensitive
to instrument placement; in the Amery experiment, only a
single station showed a clear signal from autocorrelation
(Zhan et al., 2014).

2.2.4. Oceanic seismic sources. Fluid movements
within the ocean might provide distinct seismic signals.
Oceans can also have a large tidal response due to Rossby-
Haurwitz waves associated with obliquity and eccentricity
(Tyler, 2008, 2014; Chen et al., 2014; Matsuyama, 2014;
Kamata et al., 2015; Beuthe et al., 2016). Such tidally driven
lateral flows may reach speeds comparable to the highest
speeds in ocean currents on Earth (>1 m s-1; Tyler, 2008,
2014). Resulting dissipation has been parameterized as a term
(Q) accounting for effects such as boundary-layer friction,
form drag, and transfer of momentum to the overlying ice.
Seafloor topography that causes such dissipation could in-
clude mountains with heights exceeding Earth’s seamount
heights (8 km; Wessel et al., 2010) owing to lower gravity,FIG. 2. Potential seismic sources (blue text) and how they

might be used to constrain the physical properties and pa-
rameters of a cryovolcano system (after Spencer and Nim-
mo, 2013). The hypothesized seismic sources of cavitation,
chamber resonance, and nozzle oscillations are based on
terrestrial analogues of geysers (Kedar et al., 1996, 1998),
volcanoes (Chouet et al., 1994), and volcanic nozzles (Kieffer,
1989), respectively. The geometry depicted here resembles
that suggested for Enceladus by Schmidt et al. (2008), but a
simpler ‘‘slot’’ geometry may occur instead (Kite and Ru-
bin, 2016).

FIG. 3. Fluid flow induced ground motion is recognizable
by its appearance as continuous background oscillation.
Different sources have distinct frequencies and variations in
amplitude, as shown in these example seismograms. Top:
Geyser ground motion (*20 Hz) generated by steam bubble
collapse at Old Faithful (Kedar et al., 1996, 1998). Middle:
Volcanic tremor (*2 Hz) generated by magma and hot gas
rising in the Mt. Erebus volcano’s conduit system (Rowe
et al., 2000). Bottom: Acoustic hum (*0.2 Hz) generated
by wave-wave interaction is detectable globally (Longuet-
Higgins, 1950; Kedar et al., 2008).
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and by analogy to mountain features on Io (Bland and
McKinnon, 2016). The ice shelf’s tidal displacement (ur *
30 m for Europa; Moore and Schubert, 2000) and thickness
variation with latitude (Nimmo et al., 2007a) also constitute
sources of topographic variation with time.

The main source of seismic noise on Earth is the *3–10 s
background noise caused by opposing traveling ocean waves
with overlapping frequency content. This noise source,
known as ocean microseism, results from a second-order in-
teraction between surface gravity waves. Frequency doubling
means the seismic signals have half the period of the origi-
nating swell (Longuet-Higgins, 1950). Ocean microseism can
be enhanced if resonance occurs within the water column, as
theorized by Longuet-Higgins (1950) and demonstrated by
Kedar et al. (2008; Kedar, 2011; see also Gualtieri et al.,
2014; Ardhuin et al., 2015). This swell has a typical period of
13 s, resulting in seismic signal excitation around 6 s. For a
free surface ocean, the first mode of acoustic resonance takes
place at ¼ wavelength. Given a speed of sound in water of
1500 m s-1, the first mode of a *6 s wave would take place
when the ocean is 2.25 km deep. The pressure waves reso-
nantly loading the ocean floor generate Scholte waves, sur-
face waves that propagate along the water-rock interface and
can be observed thousands of kilometers away from the source
(Stutzmann et al., 2009).

Ocean worlds capped by ice lack the surface winds that
are the source of ocean microseisms on Earth, but vertical
motions driven by global tidal flexure may substitute as a
source. The first mode of resonant excitation would be ½ the
acoustic wavelength, and the expected resonant period, T,
would be

T ¼ 2h=c

where h is the ocean depth and c is the speed of sound in
water. Assuming c = 1500 m/s, the resonant period ranges
from 40 s for a 30 km ocean to 227 s for a 170 km ocean. If
ocean microseism occurs in ocean worlds, Scholte surface
waves along the water-ice interface might be detected by a
very broadband seismometer at the ice surface.

Movement of liquid in Titan’s major sea Kraken Mare
due to tides, winds, and other effects is likely to lead to tens
of centimeters of local level change (Lorenz and Hayes,
2012), creating pressure variations on the seafloor of around
100 Pa. This is a similar pressure fluctuation as is measured
on the deep seafloor of Earth (e.g., Cox et al., 1984), which
excites the significant secondary microseism there (Longuet-
Higgins, 1950; Kedar et al., 2008). Thus, ocean-generated
microseisms might also be detected on Titan by a seismom-
eter close to the seashore.

Another possible oceanic source is the low-level excita-
tion of normal modes by motion in the ocean. On Earth,
seismic normal modes at frequencies *10 mHz are excited
at a nearly constant level by interaction of the ocean with the
continental shelf (Webb, 2007), and comparable excitations
have been proposed for Mars and Venus (Kobayashi and
Nishida, 1998). Turbulent oceanic flows in Europa (So-
derlund et al., 2014) plausibly produce acoustic transmis-
sions through the ice through dynamic pressure variations at
the base of the ice shell that are comparable to those from
the estimated global background noise due to fracturing at
frequencies from *10 to 100 mHz (Panning et al., 2017);

modeling how well this mechanism excites specific modes
will depend strongly on the frequency and wavelengths of
the turbulent motion. Although the excitation mechanism
for an ocean entirely covered in ice will undoubtedly differ
and will require future study, the possibility of a constant
excitation of normal modes is intriguing as it may further
our understanding of internal structure that constrains the
composition of the ocean (Vance et al., 2017) and oceanic
processes that govern the degree of material and heat ex-
change (Zhu et al., 2017).

2.2.5. Seismic sources in the rocky interior. In the rocky
interior, more radiogenic heat or residual heat of formation
should promote viscoelastic deformation, leading to stronger
tidal heating (e.g., Showman and Malhotra, 1997; Cam-
marano et al., 2006; Bland et al., 2009). Both sources of
heat were much stronger earlier in the Solar System’s his-
tory. The remnant heat is not quantified, creating uncertainty
in the contemporary level of seismic activity in the rocky
interiors. The thermal state and density of the rocky mantle
thus indicate the nature of any continuing volcanic activity
(Barr et al., 2001), water-rock interaction (e.g., due to ser-
pentinization and radiolysis), and the corresponding flux of
reducing materials (H2, CO2, H2S, CH4; McCollom, 1999;
Hand et al., 2009; Holm et al., 2015; Travis and Schubert,
2015; Vance et al., 2016; Bouquet et al., 2017).

Events in the rocky interior (and to a lesser extent events
in the ice layer) will excite Scholte waves at the rock-ocean
boundary (Stähler et al., 2017). Their dispersion is used in
exploration seismology and ocean acoustics to estimate the
shear velocity of the seafloor sediment ( Jensen and Schmidt,
1986). The wave coda—diffuse energy arriving after a clearly
defined seismic phase—constrains the amount of scattering,
especially in the receiver-side crust, and thereby the hetero-
geneity within the ice layer. On the Moon, this has been used
to derive the existence of the megaregolith layer (Goins
et al., 1981; Blanchette-Guertin et al., 2012). In the ice shells
of ocean worlds, it would constrain the distribution and extent
of trapped fluid layers.

Hydrothermal activity could generate seismoacoustic
signals that travel through the internal ocean and ice where
they could be intercepted by a surface seismometer. For this
and all oceanic measurements, the impedance mismatch
between ocean and ice would limit the practicality of such
measurements except for very high magnitude sources (Panning
et al., 2006).

3. Mission Requirements and Constraints

Seismic investigations will need to focus on how to most
effectively enhance the mission’s astrobiology objectives
while levying minimal requirements on limited mass,
power, and bandwidth resources. The seismometer’s sensi-
tivity, dynamic range, and bandwidth depend on the size of
the proof mass, the damping of the suspension system, and
the noise of the readout electronics (Lognonné and Pike,
2015). Consequently, sensitivity adds complexity, mass, and
cost. The challenge for planetary seismic exploration, and
for ocean worlds in particular, is to devise seismometer
systems that deliver science within tight mission constraints.

To date, the only extraterrestrial seismic studies have been
conducted on the Moon by the Apollo missions (Goins et al.,
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1981), on Mars by the Viking landers (Anderson et al.,
1977; Goins and Lazarewicz, 1979), and on Venus by the
Venera 13 and 14 landers (Ksanfomaliti et al., 1982).
Lognonné and Johnson (2007) and Knapmeyer (2009) pro-
vided thorough reviews of results from these experiments.
The Apollo missions established a sensitive seismic network
for a global study of the deep lunar interior and conducted a
shallow active study by using small explosives and geo-
phones to study the shallow (*1 km) lunar subsurface. The
seismic network set up by the Apollo astronauts in multiple
lunar landings was sensitive, albeit covering a narrow range
of frequencies (0.2–3 Hz), and detected over 7 years about
10,000 tidally triggered quakes that are presumed to occur at
the base of the lunar lithosphere (*800–1000 km depth;
Frohlich and Nakamura, 2009; Weber et al., 2009), as well
as about 1000 meteorite impacts (Lammlein et al., 1974;
Lognonné et al., 2009). These data constrain the depths of
the lunar crust (e.g., Vinnik et al., 2001; Khan and Mose-
gaard, 2002; Chenet et al., 2006), its mantle (Khan et al.,
2000; Lognonné et al., 2003; Gagnepain-Beyneix et al.,
2006), and its core (Weber et al., 2011; Garcia et al., 2011).

Both Viking landers carried seismometers to Mars, but
only the one on the Viking 2 deck operated successfully.
The Viking data are often dismissed as having limited value
due to the susceptibility of the lander-mounted instrument to
wind noise, but they helped constrain global seismicity on
Mars (Anderson et al., 1976, 1977). Similarly, the Soviet
Venera 13 and 14 landers were hampered by wind and
spacecraft noise, but they set upper bounds on the magni-
tude of microseisms and potentially observed two micro-
seism events with amplitudes of 0.8 mm or less, within
3000 km of Venera 14 (Ksanfomaliti et al., 1982).

InSight (Interior Exploration using Seismic Investiga-
tions, Geodesy and Heat Transport), a Discovery-class
mission, will place a single geophysical lander on Mars to
study its deep interior in November 2018 (Banerdt et al.,
2013). InSight’s goals are to (1) understand the formation
and evolution of terrestrial planets through investigation of
the interior structure and processes of Mars and (2) deter-
mine the present level of tectonic activity and impact flux
on Mars. To avoid the coupling problems encountered by
Viking, InSight will place a top-of-the-line broadband high-
dynamic-range seismometer (Lognonné and Pike, 2015) on
the martian surface to ensure optimal coupling, and will
effectively build a seismic vault around it by deploying a
wind and thermal shield around the seismometer.

A studied future mission to the Moon, the Lunar Geo-
physical Network (LGN), is identified as a high-priority
New Frontiers–class mission in the Planetary Science Dec-
adal survey, and seeks to understand the nature and evolu-
tion of the lunar interior from the crust to the core. The LGN
requires a very broadband seismometer, 10 times more
sensitive than the current state of the art (Morse et al., 2010;
Shearer and Tahu, 2010).

InSight and the LGN represent the high-sensitivity end-
member on a spectrum of planetary seismic exploration
concepts (Lognonné and Johnson, 2015). The requirement to
operate with similar sensitivity to instruments on Earth is
underscored by the fact that both the Moon and Mars are
less active than Earth. As noted in studies of potential lan-
ded Europa missions (Europa Science Definition Team,
2012; Pappalardo et al., 2013; Hand et al., 2017), these

requirements can be substantially relaxed in the study of
ocean worlds, which are expected to be more seismically
active. This means the seismometers delivered to the sur-
faces of the Solar System’s ocean worlds can be smaller,
lighter, and less complex than InSight’s broadband seis-
mometer.

3.1. Environmental limitations on lifetime

Planning for missions to different moons dictates a di-
verse design space covering duration, mass and power al-
location, cumulative radiation tolerance, and deployment
capabilities. Table 2 shows the range of surface tempera-
tures and estimated surface irradiation for current candidate
ocean worlds (Nimmo and Pappalardo, 2016). Radiation is
deemed to be mission limiting on Europa (Pappalardo et al.,
2013) but is less problematic elsewhere, possibly enabling
longer-duration investigations.

3.2. Dynamic range and sensitivity

Potential seismic sources span a broad range of signal
strengths and frequencies (Fig. 1), which calls for measuring
ground motions from nanometers to the tidal bulge of tens of
meters (10 orders of magnitude). The natural noise envi-
ronment on a given world can be estimated by constructing
a catalogue of events for realistic simulations of likely
sources and assuming a logarithmic relation between mag-
nitude and occurrence (Gutenberg and Richter, 1944):

log N MWð Þ¼ a� bMW

Analyses of this type performed for fractures at Europa’s
surface (Panning et al., 2017) suggest a low noise floor is
needed, with instrument performance exceeding that of
high-frequency geophone instruments.

Scattering in the porous surface regolith of an airless body
may be significant and will further increase the needed
sensitivity of any potential instrument. Pore size is a proxy
for scattering, for ground-penetrating radar as well as for
seismology. The depth and porosity of Europa’s warm
regolith are probably small (Aglyamov et al., 2017), so
scattering may be less consequential. In the older bodies
with less tidal heating, especially Callisto, the regolith may
be on the order of 10 km thick (McKinnon, 2006), thus
necessitating a greater sensitivity and longer baseline of

Table 2. Temperature Ranges and Radiation Fluxes

Likely to be Encountered by a Seismometer

at the Surface of an Ocean World

Candidate
ocean world

Surface
temperature (K)

Surface ionizing
radiation (mW m-2)

Europaa,b 50–132 125
Ganymedeb,c 70–152 6
Callistob,c 80–165 0.6
Enceladusd,e 33–145 <6
Titane,f 90–94 <6

aSpencer et al., 1999; Rathbun et al., 2010; Prockter and
Pappalardo, 2014. bJohnson et al., 2004. cOrton et al., 1996. dHowett
et al., 2011. eCooper et al., 2009. fMitri et al., 2007; Jennings et al.,
2016.
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measurement similar to those being considered for the LGN
(Shearer and Tahu, 2010).

3.3. Lander noise

As reviewed by Lorenz (2012), landers can generate
spurious signals. The seismometer on Viking was mounted
on the lander deck, and wind noise rocking the lander on its
legs was the dominant noise source. On Europa and other
ocean worlds lacking atmospheres, this should not be a
concern. Thermal creaking of metal structures, and move-
ment of residual propellant in fuel tanks in response to
changing temperatures, caused detectable noise on Apollo,
even though those seismometers were placed on the lunar
ground some distance away. The Apollo 11 instruments,
16 m from the lander, saw much more of this noise (e.g.,
Latham et al., 1970, 1972), and the instrument package on
subsequent missions was deployed more than 100 m from
the landers.

Solar flux decreases with distance from the Sun (at Jupiter
25· and at Saturn 80· less than at Earth). Thermal gradients
should be less severe than at the Moon; thus lander-induced
noise should be weaker on a per-unit-mass basis. Beyond
this expectation, however, lander noise is difficult to predict
in advance. Some mechanical operations, such as antenna
articulation, regolith sample acquisition by a robot arm or
similar device, and sample analysis operations such as
grinding or valve actuations, may generate signals detect-
able by an onboard or even nearby seismometer. Indeed, the
seismometer data may be useful in diagnosing any off-
nominal behavior of such equipment. However, it would be
desirable to define extended ‘‘quiet’’ periods when such
operations are vetoed to allow seismic observations with the
minimum lander background, and to ensure that such peri-
ods are distributed around the diurnal cycle to allow for
characterization of the ambient seismic activity as a function
of the tidal cycle. As discussed above, installing a seis-
mometer should be much simpler on airless bodies, so such
features may not be needed.

3.4. Studied mission implementations
and candidate instrumentation

Lander concepts for Europa were studied in 2012 (Europa
Science Definition Team, 2012; Pappalardo et al., 2013) and
2016 (Hand et al., 2017). The first of these would address
habitability by using a set of six broadband 3-axis seis-
mometers (0.1–250 Hz) based on the ExoMars and Insight
instruments (Pappalardo et al., 2013). Detailed objectives
were to ‘‘understand the habitability of Europa’s ocean
through composition and chemistry,’’ ‘‘characterize the lo-
cal thickness, heterogeneity, and dynamics of any ice and
water layers,’’ and ‘‘characterize a locality of high scientific
interest to understand the formation and evolution of the
surface at local scales.’’ Lander lifetime was limited by the
combination of Europa’s surface radiation (Table 2) and
constraints on shielding mass to fewer than 30 days spent on
the surface. The average unshielded dose of 6–7 rad s-1

varies with latitude and longitude on Europa’s surface, as
the incident flux of high-energy electrons (0.01–25 MeV)
from Jupiter’s ionosphere centered around Europa’s trailing
hemisphere has a longitudinal reach around Europa that
diminishes with increasing energy (Paranicas et al., 2009;

Patterson et al., 2012). Thus, radiation may be less limiting
for a lander placed on the leading hemisphere. A Ganymede
lander would also need to contend with intense radiation,
albeit 20· less than that at Europa. The trailing hemisphere
may be more irradiated, similar to Europa, but Ganymede’s
intrinsic magnetic field may protect from irradiation around
the polar regions.

Titan has the advantage that its thick atmosphere makes it
easy to deliver instrumentation to the surface by parachute.
The 2007 NASA Titan Explorer Flagship study included a
Pathfinder-like lander equipped with a seismometer (Leary
et al., 2007). Seismometers were a key component of a
subsequently studied geophysical network concept (Lange
et al., 2011). The thick atmosphere also minimizes diurnal
temperature changes that can generate local disturbances.
On the other hand, meteorological pressure variations acting
on the surface, and local wind stresses, may generate both
ground deformations (e.g., Lorenz, 2012) that increase the
need for strong coupling to the ground and might be the
source of atmospheric excitation of surface waves and
normal modes through solid planet-atmosphere coupling
(Kobayashi and Nishida, 1998; Lognonné et al., 2016).

Seismology has also been included as part of studied pe-
netrator missions to Europa (e.g., Gowen et al., 2011; Jones,
2016), Ganymede (Vijendran et al., 2010), Callisto (Franqui
et al., 2016), and Enceladus and Titan (Coustenis et al., 2009),
with the goal of confirming and characterizing the ocean,
probing the deeper interior structure, and assessing the level of
seismic activity. A seismometer under development at the
time (Pike et al., 2009) showed promise for withstanding the
required 5–50 kgee impact deceleration.

As recently demonstrated by Panning et al. (2017), the
measured noise floor of the microseismometer that was suc-
cessfully delivered for the InSight Mars 2018 mission dem-
onstrates a sufficient sensitivity to detect a broad range of
Europa’s expected seismic activity. While this seismometer
is designated as ‘‘short period’’ (in comparison to the CNES-
designed very broadband [VBB] seismometer), the SP provides
a sensitivity and dynamic range comparable to significantly
more massive broadband terrestrial instruments. The sensor
is micromachined from single-crystal silicon by through-wafer
deep reactive-ion etching to produce a nonmagnetic suspen-
sion and proof mass with a resonance of 6 Hz (Pike et al.,
2014). The SP is well suited for accommodation on a po-
tential Europa lander (Kedar et al., 2016). It is robust to high
shock (>1000g) and vibration (>30 grms). The sensor has
been tested as functional down to 77 K, below the lowest
expected temperatures on Europa’s surface. All three axes
deliver full performance over a tilt range of –15� on Mars,
allowing operation on Europa without leveling. The SP
operates with feedback to automatically initiate power-on of
the electronics, achieving a noise floor below 1 ng/OHz in
less than a minute. The total mass for the three-axis SP
delivery is 635 g, while the power requirement is 360 mW.

3.5. Example science traceability matrix

Table 3 shows a candidate traceability matrix for Europa,
developed from the detailed traceability matrix of Insight
(Banerdt, personal communication) with reference to the
features reviewed here and summarized in Fig. 1. The sci-
ence objectives (column 2) meet the overall science goal to
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‘‘Determine Europa’s habitability, including the context for
any signatures of extant life.’’ Observable features, the as-
sociated physical parameters, and derived properties are con-
tained in the measurement requirements (columns 3 and 4),
which link to estimated instrument performance requirements
(column 5).

Similar goals and associated objectives, measurements,
and performance requirements can be developed for other
ocean worlds. On other icy ocean worlds, the level of activity
may be only slightly less, or perhaps more in the case of
Enceladus or Titan, so the anticipated sensitivity and dynamic
range would be similar. However, requirements will diverge
based on the presence or absence of different phases of high-
pressure ice (Stähler et al., 2017; Vance et al., 2017), and the
differing extent and nature of present-day activity (Panning
et al., 2017). As noted by Vance et al. (2017), Ganymede is the
only world likely to possess substantial amounts of ice VI.
Titan may lack high-pressure ices and should include inves-
tigations of the atmosphere and lakes. Callisto probably has
the lowest level of seismic activity and strongest scattering in
its regolith and so would require a longer-lived and more
sensitive investigation similar to that of the LGN.

4. Conclusions

Seismology is the best tool for remotely investigating
possible ‘‘vital signs,’’ ground motions due to active fluid flow
in ocean worlds, yet only a handful of possible seismic sources
have been considered in detail to date. Detecting fluid-related
seismic signatures similar to those on Earth would provide
additional key information for constraining transport rates
through the ice and associated redox fluxes and locating pos-
sible liquid reservoirs that may serve as habitats. Seismic ac-
tivity in tidally forced icy ocean worlds is likely to exceed that
recorded at Earth’s Moon and expected at Mars. Here, we have
documented design challenges for potential future missions,
with reference to prior mission implementations and studies
and to recent studies of signal strength and propagation.
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Lognonné, P. (2005) Planetary seismology. Annu Rev Earth
Planet Sci 33:571–604.
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Lognonné, P. and Pike, W.T. (2015) Planetary seismometry.
In Extraterrestrial Seismology, edited by V.C.H. Tong and
R. Garcia, Cambridge University Press, Cambridge, UK,
pp 36–48.
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Vijendran, S., Fielding, J., Köhler, J., Gowen, R., Church, P.,
and Falkner, P. (2010) A penetrator for the Jupiter Ganymede
orbiter mission. In Proceedings of the 7th International Pla-
netary Probe Workshop, Barcelona, Spain.

Vinnik, L., Chenet, H., Gagnepain-Beyneix, J., and Lognonne,
P. (2001) First seismic receiver functions on the Moon.
Geophys Res Lett 28:3031–3034.

Walker, C. and Schmidt, B. (2015) Ice collapse over trapped
water bodies on Enceladus and Europa. Geophys Res Lett 42:
712–719.

Webb, S.C. (2007) The Earth’s ‘‘hum’’ is driven by ocean
waves over the continental shelves. Nature 445:754–756.

Weber, R., Bills, B., and Johnson, C. (2009) Constraints on
deep moonquake focal mechanisms through analyses of tidal
stress. J Geophys Res: Planets 114, doi:10.1029/2008JE003286.

Weber, R.C., Lin, P.-Y., Garnero, E.J., Williams, Q., and
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