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Abstract

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a class of ubiquitous, bacteria-derived lipid biomarkers in
terrestrial and aquatic environments. Many studies have demonstrated the potential for brGDGTs as paelotemperature prox-
ies, but the observed seasonal bias in brGDGT-inferred temperatures still remains poorly understood, particularly for Arctic
or seasonally dry climates. Here we introduce a new physical framework for understanding variations in the methylation index
of branched tetraethers (MBT) by explicitly modeling the production and preservation of brGDGTs for a bacterial popula-
tion with an exponential rate dependence on temperature. The dependence of MBT ratios on temperature is predicted to be
nonlinear, and thus has a different form from other empirically defined MBT models. We apply the model to understanding
how the methylation index depends on not only the mean annual air temperature (MAAT) but also how it depends on the
amplitude of the seasonal temperature cycle and the phase and amplitude of the soil moisture content. We performed meso-
cosm growth experiments using natural lake waters that confirm that the model correctly accounts for lower brGDGT pro-
duction rates during cold seasonal temperatures. Comparing the new model predictions with global compilations of MBT’5Me

and MBT’ data, we determine a new calibration of best fitting set of model coefficients that more accurately account for the
expected physical constraints on MBT-type data. Our new results account naturally for the expected saturation of MBT’5Me

and MBT’ at low and high temperatures, a bias of up to 5–7 �C in MAAT for high seasonal temperature fluctuations, and an
additional bias of up to 1–3 �C in MAAT for strongly seasonal soil moisture fluctuations. Taken together, the 3 effects explain
differences of up to 15 �C in inferred MAAT compared with traditional empirical models for MBT’5Me and MBT’ and results
in improved mean squared errors for both. At MAAT above 18 �C, MBT’ temperature errors are lower than those of
MBT’5Me, suggesting MBT’ may still be a useful proxy in some situations despite its added complexity. While we apply
the framework only to global MBT’5Me and MBT’ proxy data, the physical framework can be adapted to other types of pale-
oproxies and may therefore be more widely applicable. Preliminary application of our model to the Pliocene North Sea Hank
Core yields �1 �C cooler temperatures than a previous calibration and application to 130 kyr-long Chinese Loess Plateau
records yields �4 �C warmer glacial and glacial stadial temperatures compared to previous calibration.
� 2022 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Understanding present and past climate variability is
crucial for predicting future climate change. Quantitative
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paleoclimate information, such as paleotemperature, avail-
able at times prior to the availability of instrumental
records are indispensable for evaluating the performance
of climate models. Bacterial tetraether membrane lipids
called branched glycerol dialkyl glycerol tetraethers
(brGDGTs) are ubiquitous in both terrestrial and freshwa-
ter environments and have been successfully used to recon-
struct past temperatures (e.g., Weijers et al., 2007; Tierney
et al., 2010; Peterse et al., 2011, 2014; Gao et al., 2012;
Jia et al., 2013; Lu et al., 2016, 2019; Tang et al., 2017;
Inglis et al., 2020; Zhao et al., 2020; Zhao et al., 2021;
Lauretano et al., 2021) and pH changes (e.g., Peterse
et al., 2014; Lu et al., 2016; Fastovich et al., 2020; Sun
et al., 2021). Numerous studies have documented empirical
correlation between the ratios of various brGDGTs and
mean annual air temperature (MAAT) in soils, lake sedi-
ments and peatland deposits across many different climato-
logical and environmental gradients (e.g., Weijers et al.,
2007; Loomis et al., 2012; Peterse et al., 2012; De Jonge
et al., 2014; Naafs et al., 2017a,b; Dang et al., 2018;
Russell et al., 2018). Various methylation indices for
branched tetraethers (MBT, MBT’, MBT’5Me, MBT’6Me)
have been defined and shown to correlate with temperature,
with most recent paleotemperature studies using MBT’5Me

due to the sensitivity of other indices like MBT’ to other
environmental variables like pH (De Jonge et al., 2014).

However, brGDGT calibrations based on transects of
environmental samples display relatively large root mean
square errors (RMSEs) (±2–5 �C). More importantly,
many regions display strong bias in brGDGT inferred tem-
peratures, with inferred MAAT up to 10–20 �C warmer in
lake sediments from Baffin Island (Shanahan et al., 2013)
and 7 ± 1.4 �C warmer MAAT in animal bones from
Alaska (Dillon et al., 2018), which are thought to reflect
biased warm season production by bacteria in high latitude
regions (e.g., Shanahan et al., 2013; Peterse et al., 2014;
Dillon et al., 2018), though studies find minimal differences
in samples collected in different seasons due to long turn-
over times of brGDGTs in soils (e.g., Weijers et al., 2011;
Cao et al., 2018). In regions with hot/dry summers and rel-
atively wet winters (e.g., the Mediterranean, the western
USA), brGDGT inferred temperatures are up to 25 �C
lower than MAAT (Peterse et al., 2012; Dirghangi et al.,
2013; Menges et al., 2014), which has been attributed to
preferential production during the cool, wet season.
Menges et al. (2014) and Dang et al. (2016) suggest that
in dry environments, water availability rather than temper-
ature is the dominant control on methylation index. How-
ever, without a better understanding of this effect, it is
difficult to correct potential seasonal bias in brGDGT-
based temperature reconstructions, especially for paleore-
constructions, even after seasonal temperature variations
have been taken into consideration (Dearing Crampton-
Flood et al., 2020). The lack of mechanistic understanding,
including not knowing the main producers of brGDGTs or
the main ways in which environmental factors affect
brGDGT production, has hampered validation of the
proxy’s use for paleotemperature reconstruction.

To better understand how seasonal temperature vari-
ability and soil moisture variability affect methylation index
values (specifically MBT’5Me and MBT’), we introduce a
simple physical framework for modeling the production
and preservation of brGDGTs and apply the model to envi-
ronmental conditions where temperatures have a known
seasonality and soil moisture also has a known seasonal
time dependence. Fitting the model parameters to a global
database for MBT’5Me and MBT’ measurements, we deter-
mine best-fitting parameters and demonstrate a significant
saturation of MBT’5Me and MBT’ at extreme temperatures,
and a small but significant <5 �C bias in MAAT proxies
when seasonal effects are not accounted for. Mesocosm
experiments performed using natural lake samples grown
in laboratory conditions confirm that the general form of
the model is reasonable and suggest that all methylation
index proxies may benefit from the proposed model.

2. GROWTH AND PRESERVATION MODEL FOR

MBT-TYPE INDICES

The family of methylation indices that include MBT,
MBT’, MBT’5Me, and MBT’6Me are all expressed as the
ratio of certain brGDGT abundances and can generically
be written as

P ¼ C1

C1 þ C2

ð1Þ

where P is one of the various methylation index proxies
such as MBT’5Me, and Ci is the abundance of some group

of brGDGTs. For example, MBT
0 ¼ ðIaþ Ibþ IcÞ=

ðIaþ Ibþ Icþ IIaþ IIbþ IIcþ IIIaþ IIa
0 þ IIb

0 þ IIc
0 þ IIIa0Þ

so that in this case, we can associate P ¼ MBT 0,
C1 ¼ Iaþ Ibþ Ic, and C2 ¼ IIaþ IIbþ IIcþ IIIaþ IIa

0þ
IIb

0 þ IIc
0 þ IIIa0. MBT’5Me can be defined similarly, with-

out the accented terms. The premise of the proposed phys-
ical model is that the abundance observed in any particular
soil or paleosol sample is the integrated effect of the rate of
production of Ci over a timespan that is typically much
longer than a single season and has a potentially nonlinear
temperature dependence. Physically, this nonlinearity might
be anticipated since rates of production are not expected to
be negative for any temperature. For simplicity, we initially
assume the simplest nonlinear temperature dependence, an
exponential dependence, which implies

dCi

dt
¼ Ri T ðtÞð Þ ¼ R0

i e
AiðT ðtÞ�T 0Þ ð2Þ

where Ri is the rate of production of Ci, T(t) is the assumed
known temperature as a function of time, Ai expresses the
temperature dependence of Ri, and Ri

0 is the production
rate at the arbitrary reference temperature T0. (An expo-
nential function is the simplest strictly increasing function
that is always non-negative.) To calculate the predicted
value of the proxy P, we integrate Eq. (2) for each Ci until
a steady-state value of P is obtained through Eq. (1). As
will be shown below, this simple setup has all of the ingre-
dients needed to produce not only an expected temperature
dependence of the proxy P, but also a bias in P as temper-
ature cycles (e.g. seasonally).

To demonstrate the standard temperature dependence
(e.g. dependence on MAAT), one can simply substitute a
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chosen fixed value of TMAAT into Eq. (2) which then pre-
dicts that Ci increase linearly in time with different rates
that depend on Ri

0 and Ai. Solving for the ratio gives

P DTð Þ ¼ R0
1e

A1DT

R0
1e

A1DT þ R0
2e

A2DT
¼ 1

1þ R0
2

R0
1

eðA2�A1ÞDT
ð3Þ

where DT ¼ TMAAT � T 0. From this result, we can already
make a few interesting conclusions. Because P is expressed
as a ratio which cannot be below zero or above one, P is
best modeled as not being linearly dependent on DT but

for logð1P � 1Þ to depend linearly on DT (hereinafter, we

use ‘log’ to refer to the natural logarithm with base e).
Expressed in this manner, the y-intercept would be physi-

cally interpretable as logðR0
2=R

0
1Þ and the slope would be

physically interpretable as A2 � A1, which can be under-

stood by rearranging Eq. (3) to solve for logð1P � 1Þ. If a

more complicated model than the purely exponential model
of Eq. (2) were used for the temperature dependence (see
Supplementary Materials), then the proxy P is best modeled
with

log
1

P
� 1

� �
¼ m0 þ m1DT þ m2ðDT Þ2 þ m3ðDT Þ3 þ � � �

ð4Þ
where the mi are various rate coefficients (see Supplemen-
tary Materials), and the ellipsis denotes higher order terms
that could be included if additional accuracy were war-
ranted. Since such rate coefficients may not be known, it
may be most appropriate to determine them by fitting field
data. The analysis in the Supplementary Materials demon-
strates that any model with only positive production rates
of brGDGTs results in a predicted ratio proxy P that must
depend nonlinearly on temperature. For example, the fact
that concentrations are positive already implies that
P cannot be less than zero or greater than one, which
Eq. (4) satisfies for all possible DT and mi.

The role of a seasonally variable temperature on the
proxy P can now be understood by assuming the tempera-
ture variability can be modeled as having an annual average
(TMAAT ) plus a sinusoidal seasonal variability,
T tð Þ ¼ TMAAT þ T S � cos x t � t0ð Þ½ �, where TS is the ampli-
tude of the sinusoidal seasonal term, x is the annual fre-
quency (2p=1year), and t0 accounts for the phase of the
variability. Substituting this assumed T(t) into Eq. (2)
and integrating until a steady-state value of P is reached
results in a steady state solution for Eq. (1) (see Supplemen-
tary Materials), which can be written as

P � R1I0ðA1T SÞ
R1I0ðA1T SÞ þ R2I0ðA2T SÞ

¼ 1

1þ R2

R1
I0ðA2T SÞ=I0ðA1T SÞ

ð5Þ

where I0 is a mathematical special function known as a
modified Bessel function (e.g., Arfken, 1985), and
Ri ¼ RiðTMAAT Þ accounts for the average MAAT. Since
modified Bessel functions are somewhat obscure special
functions, it is useful to note that a first approximation to
the modified Bessel function is a purely quadratic function
(see Supplementary Material), and using this approxima-
tion and adding it to Eq. (4) gives

log
1

P
�1

� �
¼m0þm1DT þm2ðDT Þ2þm3ðDT Þ3þmST 2

S þ�� �

ð6Þ
where mS is the coefficient that expresses how strong the
dependence on the squared amplitude of the seasonal tem-
perature variability is expected to be. Importantly, the addi-
tional term mSTS

2 implies that the proxy P is sensitive to not
only MAAT but also to how strong the seasonal fluctua-
tions in temperature are. This in turn implies that models
that do not include this additional dependence on TS may
be biased in their estimate of MAAT from P. As in Eq.
(4), additional higher order terms could be included in
Eq. (6) for TS if additional accuracy were warranted.
Including a seasonal bias term as in Eq. (6) whose form is
derived from physical principles is expected to accurately
account for seasonal production.

Finally, we note that the dependence of the MBT-type
of proxy on other variables such as the cyclization of

branched tetraethers (CBT ¼ �logðIbþIIbþIIb
0

IaþIIaþIIa0 Þ) index (e.g.,

as a proxy for pH or other environmental conditions)
(Weijers et al., 2007) or soil moisture content can also be
included in this framework by simply assuming that Ri

0

has an extra dependence on the quantities of interest. As
with Eqs. (3)–(6), since production rates are always posi-
tive, it can be shown that including these extra dependen-
cies results in the same form of expected dependence, with

the simplest assumption being that logð1P � 1Þ depends lin-
early on the additional variables. Our final model for P

can then be written as

log
1

P
� 1

� �
¼ m0 þ m1DT þ m2ðDT Þ2 þ m3ðDT Þ3

þ mST 2
S þ mCBTCBT þ mMM ð7Þ

where the mean annual air temperature (MAAT) depen-
dence is determined by the three terms that depend on
DT ¼ TMAAT � T 0, the seasonal temperature dependence
depends on the square of the amplitude of the seasonal tem-
perature fluctuation TS, and the dependencies on CBT and
soil moisture proxy M are assumed to be as simple as pos-
sible. We note that using a different reference temperature
T0 would result in different values of mi but that the func-
tional form remains unchanged. Depending on how accu-
rately the dependence of P on the various quantities are
known, a larger or smaller number of terms may be used
in the fit for that variable. In the global dataset that we ana-
lyze below, the MAAT dependence is more complex than
can be accounted for with a single variable and thus war-
rants the 3-term fit (i.e., unknown parameters m1, m2 and
m3) whereas the fluctuations due to the other variables
can be adequately fit with the corresponding 1-term fits as
in Eq. (7). (Tests were done with more terms and found
to only marginally lower the RMSE.) While the present
paper focuses on MBT-type proxies, we note that the
framework described here can also be applied to ratios of
non-brGDGT species such as alkenones for which there is
a nonlinear and seasonal temperature dependence.



Fig. 1. Laboratory experiment data and model fit. (a) Imposed
temperature vs. time, (b) Observed MBT’5Me values (blue crosses)
and predicted MBT’5Me values for the best fitting model
with parameters R1

0 = 6.0/day, R2
0 = 0.08/day, A1 = 0.45/�C,

A2 = 0.65/�C, T0 = 20 �C. (c) Same as (b) for MBT’ with
parameters R1

0 = 4.2/day, R2
0 = 4.5/day, A1 = 0.1/�C,

A2 = -0.05/�C, T0 = 20 �C.

J. Zhao et al. /Geochimica et Cosmochimica Acta 327 (2022) 158–169 161
Although applying this nonlinear framework to multivari-
able regression is beyond the scope of the present work,
future extensions could be constructed to apply to multiple
regression proxies like the MATmr proxy of De Jonge et al.
(2014). We note, however, that the physical constraints
emphasized in this work would result in a very different
mathematical structure compared to purely statistical
approaches such as in the recent Vequaud et al. (2022)
study, which has some of the same limitations as the linear
empirical models described above. It is difficult to know
when such statistical constraints are reliable when applied
in situations that are different from those in the calibration
dataset.

3. LABORATORY EXPERIMENTS TO CONFIRM

MODEL FRAMEWORK FOR TEMPERATURE

DEPENDENCE

Prior to applying the framework discussed in Section 2
to field data, we first confirm that brGDGTs and the
MBT’5Me and MBT’ proxies specifically have a temperature
dependent growth rate that are adequately described by the
framework defined above. We accomplished this by per-
forming mesocosm laboratory experiments in which natural
lake samples from under ice cover at Lake Wudalianchi
(�0 �C) were kept under normal aerobic conditions for
11 months but with a range of natural and unnatural tem-
perature conditions, with brGDGT analyses being done on
samples every 4 weeks (Fig. 1; see Supplementary Materials
for details about the extraction protocol, separations and
mass spectrometer analyses). The temperature cycling was
such that temperature rose slowly for the first �5 months
(approximately +1.62 �C/month), decreased more rapidly
over the next �3 months (approximately �4.2 �C/month),
and then was maintained at a cold �4 �C for another
2 months (see Fig. 1). MBT’ and MBT’5Me were calculated
using the standard methodology (Peterse et al. 2012; De
Jonge et al., 2014). As shown in Fig. 1, the MBT’5Me and
MBT’ proxies show the expected increase with warm/
warming temperatures and a decrease in the proxies with
cold/cooling temperatures. However, it is also clear that
when temperature is held roughly constant, there is a lag
in the proxies, with MBT’5Me/MBT’ increasing during
steady warm temperatures, and MBT’5Me/MBT’ decreasing
by a smaller amount during steady cold temperatures. As
expected, this implies that the measured value of MBT’5Me/
MBT’ cannot depend only on the instantaneous tempera-
ture, and strongly suggests that it is instead the rate of
change of the individual constituent brGDGTs that is
affected by temperature, as described in Eq. (2).

To further test the applicability of the modeling frame-
work described in Section 2, we fit the laboratory data with
a version of the model modified to account for the very
short timescale of the experiments. Different from natural
samples, the temperature variability in the �1-year labora-
tory experiment time period is not long enough to reach the
steady-state solution in Eq. (5). However, one can still
numerically integrate Eq. (2) given the known laboratory
temperature time series T(t) and determine the coefficients
Ri
0 and Ai that allow the modeled MBT’5Me/MBT’ to best
fit the measured MBT’5Me/MBT’ values. Performing a grid
search over the parameters yields a model that reasonably
accurately fits the MBT’5Me/MBT’ data (see Fig. 1). The
success of the model in capturing the laboratory observa-
tions provides encouraging support that the model frame-
work may also appropriately capture the temperature
variability observed at field sites around the world.
Although the best fitting laboratory parameters are unlikely
to be relevant to field conditions, they confirm that the non-
linear temperature dependent production rate assumed in
Eq. (2) is consistent with the laboratory data and motivates
the attempt to use the framework at a global scale with
model constraints from field data. We note that the
MBT’5Me data initially increase more quickly than in the
MBT’ case and is modeled to do so because the temperature
dependence is stronger (coefficients A1 and A2 are larger),
resulting in more production when temperature is suddenly
increased from 0 �C.

4. GLOBAL CALIBRATION OF THE NEW MODEL

FOR MBT’5ME AND MBT’

To determine the best-fitting parameters of the new
model in field conditions, particularly with the aim of con-
straining the best MAAT dependence, the best seasonal
temperature dependence, and the role of soil moisture, we
fit Eq. (7) to a global database of 561 MBT’5Me, MBT’
and CBT measurements (Peterse et al., 2012; De Jonge
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et al., 2014; Wang et al., 2016; Naafs et al., 2017a; Dearing
Crampton-Flood et al., 2020). For each site, daily average
temperature measurements (CHELSA database version
2.1, Karger et al., 2017) were used to determine the best-
fitting sinusoid, i.e. T tð Þ ¼ TMAAT þ T Scosðxt þ /Þ, where
x ¼ 2p=ð1yearÞ and / is the phase of the seasonal variabil-
ity. Similarly, monthly soil moisture measurements
(TerraClimate database, Abatzoglou et al., 2018) were used
to determine the amplitude and phase of the moisture con-
tent variability. To reduce the weight in the calibration to
densely sampled regions, we average individual site data
at a grid resolution of 0.5 degrees. (See Supplementary
Table 1 for the data at the 561 individual sites as well as
the mean data for the 235 geographically averaged sites
used in this study.) Here we choose to define the moisture
content proxy M as the projection of the seasonal moisture
content (precipitation minus evaporation in mm) variability
onto the seasonal temperature variability, so

M ¼ T
*

S �M
*

S

T S
ð8Þ

where T
*

S is the vector seasonal temperature and M
*

S is the
vector seasonal moisture (see Supplementary Material).
We note that with this definition, M has units of mm equiv-
alent water, and is positive when moisture content corre-
lates strongly with temperature and is negative when
moisture content anticorrelates with temperature. This
choice emphasizes the role that the relative phase and
amplitude of the seasonally varying moisture content might
Fig. 2. (a) Observed MBT’5Me (symbol size) as a function of mean an
variability TS (y axis), colored by moisture proxy M. (b) Same as (a) for
below 15 �C TS are either in the coastal Arctic or the Tibetan Plateau.
75MBT’5Me points and in (b) are 200MBT’ points.

Table 1
Model parameter values, with T0 = 10 �C. Units are degrees C for tempe
water for moisture content. Thus, units for m1 are 1/�C and units for m2

T0 m0 m1 m2

MBT’5Me 10 �C �0.2061 �0.1336 �2.21 � 10-3

MBT’ 10 �C 1.6058 �0.1074 �2.73 � 10-3
have in affecting MBT’5Me/MBT’. Other choices of M are
possible and would be appropriate for different hypotheses
regarding how moisture potentially affects brGDGT pro-
duction and thus MBT’5Me/MBT’ measurements. In
Fig. 2, we plot the MBT’5Me and MBT’ data (symbol size)
vs. MAAT and seasonal TS, and colored by M. While we
have used the entire global database for this calibration
study, calibration could be improved for specific environ-
mental conditions at the cost of having fewer data points
(e.g., Russell et al., 2018; Raberg et al., 2021) and could
be done in future work. While most recent paleotempera-
ture studies have focused on MBT’5Me, due to its lower sen-
sitivity to pH and generally lower residual errors than other
MBT-type proxies, we have chosen to also provide global
calibrations for the older MBT’ proxy since an improved
calibration for it could revive its usefulness despite its more
complex dependence on other environmental variables
compared with MBT’5Me.

With all the variables in Eq. (7) measured for the global
dataset, we can proceed to determining the best-fitting coef-
ficients m0, m1, m2, m3, mS, mCBT, and mM. We perform a

least-squares fit of the transformed data logð1P � 1Þ (where

P = MBT’5Me or MBT’) to solve for the 7 unknown param-
eters. To maintain the expected monotonic dependence of
MBT’5Me/MBT’ on MAAT, we force monotonicity for
the DT dependence in Eq. (7) over the range �10 �C <
T < 30 �C, which can be expressed as algebraic inequalities
on m1, m2 and m3 (Fenimore et al., 2000). The best fitting
parameters are tabulated in Table 1 (MBT’5Me parameters
in row 1, MBT’ parameters in row 2). The predicted
nual air temperature (MAAT) (x axis) and seasonal temperature
MBT’. We note that most sites with MAAT lower than 0 �C and
To account for the different mean values, symbol sizes in (a) are

rature, unitless for MBT’5Me, MBT’ and CBT, and mm equivalent
and mS are 1/(�C)2.

m3 mS mCBT mM

1.89 � 10-5 �1.84 � 10-3 �0.365 �7.59 � 10-3

�1.57 � 10-6 �7.93 � 10-4 �1.254 �4.52 � 10-3
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MBT’5Me is plotted with the observed MBT’5Me as a func-
tion of MAAT in Fig. 3a and the predicted MBT’ is plotted
with the observed MBT’ as a function of MAAT in Fig. 3c.
Residuals are plotted in Fig. 3b and d, respectively. To
compare the new model results with previous calibrations,
the linear regression calibrations of De Jonge et al.
(2014), Naafs et al. (2017a) and Dearing Crampton-Flood
et al. (2020) are plotted in Fig. 3a and the linear regression
calibration of Peterse et al. (2012) is also plotted in Fig. 3c
(using average CBT), with residuals for all models also
shown in Fig. 3b and d.

Root-mean squared error (RMSE) for our new calibra-
tions are lower than the corresponding linear models, with
a RMSE of 0.090 (in non-dimensional proxy ratio units) for
the new nonlinear MBT’5Me calibration, compared with
0.169 for the De Jonge linear MBT’5Me model, 0.119 for
the Naafs linear MBT’5Me model and 0.104 for the Dearing
Crampton-Flood median BayMBT MBT’5Me model (see
Fig. 3b), and a RMSE of 0.139 for the new nonlinear
MBT’ calibration, compared with 0.186 for the Peterse lin-
ear MBT’ model (see Fig. 3d). For the MBT’5Me linear
models, we note that the De Jonge and Naafs models both
have positive residuals at low MAAT and negative residu-
als at high MAAT; in contrast, the Dearing Crampton-
Flood model has positive residuals at moderately high
MAAT (15–25 �C) and slightly negative residuals at low
MAAT (<5�C), suggesting that purely linear models do
Fig. 3. Comparisons of observations and predictions for global datasets.
circles) as a function of observed mean annual air temperature (MAAT)
Purple dashed-dotted line denotes the linear regression model of De Jo
regression model of Naafs et al. (2017a) and the gray dashed line denotes
Flood et al. (2020). (b) Residual plot of observed MBT’5Me minus predict
new nonlinear model calibration, open purple circles are for the De Jong
et al. (2017a) linear model and open gray diamonds are for the median Bay
line denotes the linear regression model of Peterse et al. (2012). (d) Same
linear model.
not fully capture the observed trends despite capturing
the linear portion of the trends. Since the new models are
nonlinear, the reported RMSEs in MBT’5Me and MBT’ cor-
respond to different MAAT RMSEs depending on the val-
ues of MAAT or the proxies. For example, the same 0.090
RMSE for MBT’5Me corresponds to a 2.9 �C RMSE at a
MAAT of 10 �C, a 3.3 �C RMSE at a MAAT of 5 �C
and a 5.2 �C RMSE at a MAAT of 20 �C; and the 0.139
RMSE for MBT’ corresponds to a 5.5 �C RMSE at a
MAAT of 10 �C, a 8.8 �C RMSE at a MAAT of 5 �C
and a 4.0 �C RMSE at a MAAT of 20 �C. There is also
structure in the error, for example with generally smaller
residuals (and thus RMSE) from 18–27 �C (and also �5
to 4 �C to a lesser extent) than from 5–17 �C (see blue circles
in Fig. 3b and d), so that one may expect lower MBT’5Me

error at temperatures at 18–27 �C than one would calculate
with the global RMSE. We also note that while most recent
authors have favored the MBT’5Me proxy to the MBT’
proxy because models for it have a reduced RMSE and
have a less significant pH dependence, our new MBT’ cali-
bration has a lower RMSE compared to the De Jonge
MBT’5Me model and has a lower MAAT RMSE than our
MBT’5Me calibration for some temperatures, suggesting
that there may be situations where MBT’ may still provide
useful MAAT constraints. For example, due to the earlier
saturation of MBT’5Me at high temperatures compared to
MBT’ (approaching values near 1 at lower temperatures),
(a) Observed MBT’5Me (blue crosses) and predicted MBT’5Me (red
. Black line denotes the average MAAT dependence of the model.
nge et al. (2014), the yellow dashed-dotted line denotes the linear
the median linear regression model BayMBT of Dearing Crampton-
ed MBT’5Me as a function of MAAT. Filled blue circles are for the
e et al. (2014) linear model, open yellow squares are for the Naafs
MBT linear model. (c) Same as (a) for MBT’. Purple dashed-dotted
as (b) for MBT’. Open purple circles are for the Peterse et al. (2012)



Fig. 4. (a) Observed MBT’5Me minus predicted MBT’5Me excluding the TS term, converted to predicted average temperature bias assuming an
average temperature of 10 �C (blue crosses). Red line shows the predicted bias from the model, converted to average temperature bias in the
same way. (b) Observed MBT’5Me minus predicted MBT’5Me excluding the M term, converted as in (a) (blue crosses). Red line is the predicted
bias. (c) Same as (a) for MBT’. (d) Same as (b) for MBT’.
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the mean 0.139 RMSE for MBT’ results in a lower MAAT
RMSE than the 0.090 RMSE for MBT’5Me at temperatures
higher than 18 �C, with a MAAT RMSE of 4.0 �C for
MBT’ and a MAAT RMSE of 5.2 �C for MBT’5Me at a
MAAT of 20 �C. Thus, the MBT’ proxy may provide
higher resolution of warm paleoclimates than MBT’5Me

despite the fact that it has a more complicated dependence
on other environmental factors.

The value of mS implies that for a large 20 �C seasonal
temperature fluctuation (TS = 20), there is a �0.736 bias

in logð1P � 1Þ for MBT’5Me and a �0.317 bias in logð1P � 1Þ
for MBT’. The amount of bias predicted in MBT’5Me or
MBT’ depends on its background value. For example, for
a background value of MBT’5Me = 0.8, the seasonal bias
in MBT’5Me is predicted to be +0.093 whereas for a back-
ground value of MBT’5Me = 0.4, the same 20 �C seasonal
fluctuation causes a predicted bias in MBT’5Me of +0.182.
The bias is shown graphically for MBT’5Me and MBT’ in
Fig. 4a and c, respectively, by plotting the observed values
minus the predicted values excluding the seasonal tempera-
ture term (TS) as a function of TS, converted into a pre-
dicted average temperature bias assuming an average
temperature of 10 �C. Plotted as a red line is the predicted
average bias of the model. As shown, at the most extreme
seasonal temperatures (TS > 20 �C), there is a robust bias
in predicted MAAT of about 7 �C for MBT’5Me and a
somewhat smaller but still robust bias of about 5 �C for
MBT’. Thus, we expect locations with large seasonal tem-
perature variability to have MBT’5Me or MBT’-inferred
MAAT up to 5–7 �C too high if the seasonal term were
not included.
Performing a similar analysis for the bias due to mois-
ture content, the maximum bias in predicted MAAT is
about 3 �C for MBT’5Me and about 1 �C for MBT’. Unfor-
tunately, the bias due to moisture content is not as well con-
strained as the seasonal temperature bias with the global
dataset, partly because the majority of the data occur at
small magnitudes of moisture projection (|M|<10 mm), with
an uncertainty in the bias that often exceeds the bias itself
(see Fig. 4), and partly because the coarseness of the global
moisture database does not accurately capture small-scale
moisture variability. This bias is perhaps only important
for sites where moisture content is strongly variable and
either correlates or anticorrelates strongly with tempera-
ture, and should be revisited in later work if a more robust
relationship is needed than is possible to constrain with the
present data and model. Potential users of the model may
assume the mM coefficient is zero if they do not want to
include this moisture part of the model and the rest of the
model remains unchanged. Additionally, if more accurate
moisture data become available in the future, it would be
straightforward to recalibrate this part of the model.

As described in Eq. (7), we also test the inclusion of CBT
as an explanatory variable, despite recent calibrations sug-
gesting that MBT’5Me is uncorrelated with pH (De Jonge
et al., 2014). Consistent with previous findings, we find that
CBT explains a large and significant bias in MBT’ of about
+13 �C per CBT unit (i.e., +13 �C/1CBT). However, we
also find that CBT explains a smaller (but still significant)
bias in MBT’5Me of about +2.6 �C per CBT unit, the smal-
ler bias being consistent with previous findings that pH
does not correlate significantly with MBT’5Me. To further
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test the robustness of this result, we check whether the frac-
tional cyclization index fC (Martinez-Sosa and Tierney,
2019) has a similar effect when included in place of CBT.
We find a significant negative MAAT bias for fC (-1.8 �C
per 0.1 fC units at a mean of 10 �C) in the MBT’5Me calibra-
tion, consistent with the (positive) CBT bias for MBT’5Me.
We do not attempt to explain the reason that CBT remains
a statistically significant explanatory variable for MBT’5Me

despite the lack of correlation between MBT’5Me and pH,
but advocate keeping it in the calibration due to its signif-
icant explanatory power.

We close this section by describing how users may utilize
the nonlinear models with parameters listed in Table 1 to
infer MAAT given measurements of the proxy (e.g., either
MBT’ or MBT’5Me). Due to the nonlinear nature of the
model, inverting Eq. (7) to solve for DT in terms of mea-
sured P, TS, CBT and M is not as straightforward as with
purely linear models. The easiest way of utilizing the new
calibration is to calculate the DT -dependent terms on the
right hand side (RHS) of Eq. (7) for all possible DT (e.g.,
all temperatures between �10 �C and 30 �C) and then use
this as a look-up table to find the DT that best matches
LHS = RHS for the specific measured values of the proxy
P, TS, CBT and M at each site. Since the model is con-
strained to be monotonic in DT , the inferred DT is unique.
Code to perform this inversion is provided in the Code
Availability section.

5. APPLICATION TO MBT PALEOSOL

TEMPERATURE PROXIES

Many studies have shown that high latitude sites have
brGDGT-inferred temperatures that are substantially
higher than mean annual averages (e.g., Pearson et al.,
2011; Weijers et al., 2011; Shanahan et al., 2013; Wang
et al., 2016; Naafs et al., 2017a; Dang et al., 2018). Our
new physical model implies that such a bias is expected
for two reasons. First, and most importantly, as shown in
Fig. 3a, the physical model demonstrates that MBT’5Me

and MBT’ (or other ratio-based proxies) cannot maintain
their linear relationship with MAAT for extreme tempera-
tures due to the physical impossibility of negative ratios
of observed quantities (or ratios above 1). For example,
the Naafs et al. (2017a) calibration predicts
MBT’5Me = 1.006 at a MAAT of 25 �C, which is impossi-
ble. Accounting for a physical model implies that MBT’5Me

values at low MAAT (below �10 �C) will be higher than
would have been predicted using a linear fit (by up to
+0.2 in MBT’5Me and up to +10 �C in inferred MAAT
for very low MAAT) and vice versa for high MAAT (above
20 �C); similarly, MBT’ values at low MAAT (below �4 �
C) from the Peterse linear fit are biased low, with the new
model predicting up to +0.3 MBT’ and +10 �C for low
MAAT, and vice versa for high MAAT (above 22 �C). This
therefore explains a significant part of the trend towards
higher MBT’5Me/MBT’ values and higher inferred temper-
atures at sites with MAAT < 10 �C. We note that the linear
calibration of Dearing Crampton-Flood et al. (2020)
appears to partially fix this extreme temperature bias but
at the cost of degrading the RMSE at intermediate temper-
atures (data from 15 to 25 �C appear to be biased high com-
pared with the model, with significantly worse fit in this
temperature range; see Fig. 3ab), whereas the nonlinear
model has lower RMSE residuals over a wider range of
temperatures.

The nonlinear nature of the new model also leads to sig-
nificant differences compared to the linear model at inter-
mediate temperatures, especially for the MBT’ results. As
shown in Fig. 3b, the new nonlinear model has significant
curvature in the MBT’/MAAT relationship, with the new
predicted MBT’ values being offset to lower values than
predicted with the linear regression model of Peterse et al.
(2012) (in other words, a given value of MBT’ predicts
higher MAAT). This intermediate temperature offset is less
severe for the new MBT’5Me calibration primarily because
the global data are more linear over the observed range
of temperatures and quite closely follows the Naafs et al.
(2017a) calibration for temperatures between 0–20 �C
(although it is sometimes more than 1 �C different), with
more significant differences only at more extreme tempera-
tures. The nonlinearity of the model generally implies that a
given change in MAAT has a greater effect on MBT’5Me/
MBT’ values at intermediate temperatures than at more
extreme temperatures.

A second significant bias is due to generally higher rates
of production of brGDGTs during warmer seasons. Thus,
for sites with low MAAT but a strong seasonal temperature
variability (upper left of Fig. 2ab), we predict a strong bias
in MBT’5Me of up to +0.23 or an inferred MAAT bias of up
to about 7 �C (see Fig. 4a) and a weaker bias in MBT’ of up
to +0.10 or an inferred MAAT bias of up to about 5 �C (see
Fig. 4c). In contrast, for sites with low MAAT but small
seasonal temperature variability (lower left of Fig. 2a), we
predict there to be no significant additional bias from sea-
sonal variability. Including both the nonlinearity and sea-
sonality effects, the new physical model predicts up to a
15 �C difference compared to a linear model without a sea-
sonal term for the coldest and most seasonally variable sites
for both MBT’5Me and MBT’.

In addition to temperature, soil moisture also plays an
important role in determining the production of brGDGTs
in soils. Previous studies suggested that soil brGDGT-
inferred temperatures are significantly lower than MAAT
for sites with dry summers, such as the Iberian Peninsula,
the Mediterranean and Arizona (Peterse et al., 2011;
Menges et al., 2014; De Jonge et al., 2014). Our model sug-
gests that there can be a bias of up to 3 �C for MBT’5Me

and up to 2 �C for MBT’ due to soil moisture being highly
variable and anticorrelated with temperature variability
(i.e. wetter cold season; see Fig. 4bd). It is likely that a differ-
ent soilmoisture proxy that better accounts for the severity of
the dry seasonmay produce a stronger bias and thus be better
able to explain the large observed bias, but such a proxy was
not identified and could be the topic of future study.We note
that when the dry season is extreme, the physical model rep-
resented byEq. (7) with a linearly addedmoisture proxy term
may also be too simplistic, and the modeling framework
should be revisited to specifically account for this physics.

As an initial demonstration of the competing tempera-
ture biases for MBT’5Me, we apply our new nonlinear
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calibration to the Hank Core Pliocene marine sediment
sequence in northwestern Europe (North Sea basin),
which has been analyzed by Dearing Crampton-Flood
Fig. 5. Paleotemperature estimate for the Hank Core (Nether-
lands, northwestern Europe) using our revised nonlinear calibra-
tion for MBT’5Me. The thick blue solid line shows the new
nonlinear MAAT paleotemperature estimate using the calibration
in Table 1, and the thick red dashed line shows the estimate using
only the MAAT part of the model (excluding TS and M). The 3
thin lines show results using previously published calibrations of
De Jonge et al. (2014) (dashed-dotted purple), Naafs et al. (2017a)
(yellow), and the BayMBT0 model of Dearing Crampton-Flood
et al. (2020) (gray). For this dataset, TS = 7.1 �C and
M = �23.9 mm, based on modern observations. Modeled
MBT’5Me is interpolated from the predicted Eq. (7). See Code
Availability for further details. We note that one point at 216 m
depth plots off scale (less than 0 �C) due to a very low inferred
MBT’5Me value of 0.324, which we believe may have been over-
corrected for marine overprinting.

Fig. 6. Paleotemperature estimates using MBT’ and CBT measurements f
blue thick solid lines show the MAAT paleotemperature estimates usin
estimates using only the MAAT part of the model (using parameters m0-

using the standard MBT’ calibration of Peterse et al. (2012). For Mangsh
and M = -2.3 mm, based on modern observations. Soil moisture M has a
estimates, modeled MAAT is interpolated from the predicted Eq. (7). Se
et al. (2020). For TS and M, we use modern estimates,
though future work could potentially improve upon this
by using paleoclimate simulations; future work will also
be needed to determine more generally which locations
and paleoclimates have seasonal fluctuations that are sim-
ilar to modern estimates or not. In Fig. 5 we show pale-
otemperature estimates using our revised nonlinear
calibration (thick blue line), compared with estimates
using previous calibrations (De Jonge et al. (2014),
Naafs et al. (2017a), and Dearing Crampton-Flood et al.
(2020)) as well as a version of our nonlinear calibration
with only the MAAT dependence included (no seasonal
or moisture correction; thick dashed red line). Interest-
ingly, for this profile, the nonlinear bias, seasonal bias
and moisture bias are all significant (each with > 1 �C pre-
dicted differences). The seasonal bias is moderate, with a
seasonal temperature variability of TS = 7.1 �C, corre-
sponding with near-Arctic European coastal conditions.
The moisture bias is strong and negative, with
M = �23.9 mm, corresponding to wet winter and dry
summer conditions. The combination of the nonlinear bias
and moisture bias results in the Hank Core estimated
MAAT being significantly higher than that using the
Naafs et al. (2017a) calibration by an average of +2.5 �
C, despite the moderate seasonal bias in the opposite
direction. Our estimated MAAT is lower than that pre-
dicted by the BayMBT0 calibration of Dearing
Crampton-Flood et al. (2020) by an average of �1.0 �C.
We suggest that the inferred temperatures of Dearing
Crampton-Flood et al. (2020) may be slightly overesti-
mated due to the bias in intermediate temperatures dis-
cussed at the beginning of this section, but their
estimates are also affected by their choice of priors. The
fact that our estimated MAAT is fairly similar to that pre-
dicted by the De Jonge et al. (2014) calibration is some-
what fortuitous, due to multiple corrections partially
or the (a) Mangshan loess profile and (b) Lantian loess profile. The
g the calibration in Table 1, the red thick dashed lines show the
m3), and the thin yellow lines show the paleotemperature estimates
an, TS = 13.1 �C and M = 7.45 mm and for Lantian, TS = 12.1 �C
negligible effect on the reconstructed temperature. For the revised
e Code Availability for further details.
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cancelling. We note that the recent calibration by
Vequaud et al. (2022) produces estimates that are also
similar to the De Jonge et al. (2014) calibration.

While many authors have moved away from using the
MBT’ proxy, the reduced RMSE from our nonlinear cali-
bration suggests that it may still provide useful MAAT con-
straints (particularly from 18–25 �C) and we therefore also
show a demonstration of the intermediate temperature bias
for MBT’. In Fig. 6, we show two applications of the new
model to paleosol records from Mangshan and Lantian,
China (Peterse et al., 2014; Lu et al., 2016; see Fig. S2)
which show that inferred temperatures are systematically
higher than from standard MBT’/CBT calibrations
(Peterse et al., 2012), with a maximum bias of about +4 �C
from only the MAAT part of the new model (see red thick
dashed curves in Fig. 6). Due to the nonlinearity, different
temperatures have a different bias, with the +4 �C occurring
during the coldest (glacial) periods and interglacials having
a smaller +2–3 �C bias. This result has significant implica-
tions for the glacial-interglacial temperature differences at
this site, with a smaller predicted �5 �C glacial-to-
interglacial warming, compared to previous estimates of
�6–10 �C over this time period at Mangshan (Peterse
et al., 2014), Lantian (Gao et al., 2012) and Yuanbao (Jia
et al., 2013) within the plateau (Fig. S3a). Our new estimate
is consistent with the alkenone-based �4.5 �C at Balikun
Lake in Xinjiang (Zhao et al., 2017) and the 4–5 �C north-
ern hemisphere integrated temperature change (Marcott
et al., 2013, Shakun et al., 2012), although other recent
studies suggest a somewhat larger �7 �C warming of global
mean surface temperature (Osman et al., 2021). Climate
models also suggest that the annual temperatures during
the Last Glacial Maximum were �3–4 �C colder on the
Chinese Loess Plateau relative to pre-industrial times
(Tian and Jiang, 2016). We note that MBT’5Me results at
Lantian do not have such a large systematic bias (and
Mangshan does not have MBT’5Me measurements), but
the MBT’5Me temperature reconstruction may be less accu-
rate than MBT’ results due to the high 6-methyl contribu-
tion there (�52.7 ± 7%; Lu et al., 2016; Naafs et al.,
2017a,b) as well as the generally warm temperatures (see
Section 4), and we therefore focus on the MBT’ prediction.
For the Mangshan and Lantian datasets, the seasonal bias
is small compared to the MAAT bias, with an average bias
in paleotemperature estimate of about �0.5 �C so that the
overall bias is dominated by the strongly positive nonlinear
curvature bias than by the weak seasonal bias.

6. CONCLUSIONS

We have shown that a new physical model for MBT-
type temperature proxies improves upon standard empirical
linear MBT’5Me/MBT’-temperature calibrations by reduc-
ing biases due to saturation, seasonal temperature variabil-
ity and moisture variability. Together, the new model
accounts for up to 15 �C in estimated MBT’5Me/MBT’-
derived temperature biases in extreme cases, and using the
new calibration decreases root mean squared errors com-
pared with the linear calibrations. Initial applications show
northwestern Europe Pliocene temperatures that are �1 �C
cooler than previous studies, and Last Glacial Maximum
temperatures on the Chinese Loess Plateau that are �2–
4 �C warmer than previous calibrations. The physical con-
straints of the new nonlinear model and the improved
errors compared to empirical models suggests that the non-
linear model has merit and may have wide applicability to
other ratio-based temperature proxies.

7. CODE AVAILABILITY

MATLAB code to perform temperature estimates using
the nonlinear models is provided on zenodo at https://doi.
org/10.5281/zenodo.6363593.
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Menges J., Huguet C., Alcañiz J. M., Fietz S., Sachse D. and
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